私有AI大模型开发准备工作:
1. 编程语言 python、javascript
2. 算法库可以直接利用现有的python库,没必要再自己造轮子了现成的轮子
3. 搭建UI界面,搭建web服务接口
4. 基础大模型
5. 定制数据集
目录
本文开始先从准备搭建一个带webui的大模型对话界面开始介绍。
第一节 安装部署miniconda,搭建一个python运行环境
常见疑问:Miniconda和Anaconda的关系,Anaconda比Miniconda多包含了工具包,如果在不确定AI项目要使用的工具包情况下,下载miniconda就可以了,需要什么工具包,下载什么工具包。
1. 下载miniconda
官网下载地址
https://docs.anaconda.com/free/miniconda/
镜像下载地址
Index of /anaconda/miniconda/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror
2. 安装miniconda
修改安装路径,如果C盘空间不大,可以配置安装到其他盘符上,我配置到了D盘 miniconda3
安装完成后会弹出网页
3. 运行conda
3.1 查看conda版本
conda -V
3.2 查看conda 信息包括安装路径
conda info
3.3 创建一个虚拟环境
# mygpt 是虚拟环境的名称
# python=3.10 是制定了python的版本号
conda create -n mygpt python=3.10
3.4 激活虚拟环境
# mygpt 是刚才创建的虚拟环境名称
conda activate mygpt
3.5 退出当前虚拟环境
conda deactivate
3.6 查询conda中有那些虚拟环境
conda info -e
或
cond info --envs
或
conda env list
3.7 切换虚拟环境
conda activate tts
提示:不同的虚拟环境可以安装不同的python 版本和 各种python库
3.8 查看当前conda 环境下安装的包
conda list
3.9 查看python 版本,非conda命令
python -V
3.10 查看python 安装的包,非conda命令
pip list
3.11 在当前环境下查询工具包
#conda search <package_name>
conda search openssl
如果查询的包没有安装会有相应的提示,例如:
3.12 在当前环境下安装指定版本的工具包
#conda install <package_name>
conda install ollama=0.1.9
3.13 在当前环境下更新工具包
conda update ollama
如果我们想要升级 mytts 环境 下的 numpy 和 scipy,只需执行
conda update -n mytts numpy scipy
如果要更新 conda 本身,则需执行
conda update conda
如果要更新 anaconda ,则需执行
conda update anaconda
注: 升级 Anaconda 前需要先升级 conda。
3.14 在当前环境下删除工具包
conda remove ollama=0.1.9
3.15 复制当前环境到一个新的环境中
#conda create --name <new_env_name> --clone <copied_env_name>
conda create --name mygpt --clone mytts
3.16 删除一个工作环境
后面要加上 --all 参数
#conda remove --name <env_name> --all
conda remove --name mytts --all
3.17 重名一个工作环境
conda create -n <newname> --clone <oldname>
conda remove -n <oldname> --all
3.18 清除当前工作环境
# 删除没有用的包
conda clean -p
# 删除保存下来的压缩文件(.tar)
conda clean -t
# 删除无用的包和缓存
conda clean --all
3.19 查看 conda 下载包的源地址
conda config --show-sources
3.20 更新源地址
conda config 用来配置 conda 的频道,相关信息会存储在 C:\Users\你的用户名\.condarc 文件中。
Windows 用户.condarc 的文件,可以先执行
conda config --set show_channel_urls yes
修改 .condarc 文件,我的.condarc文件如下:
channels:
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
deepmodeling: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/remote_read_timeout_secs: 1000.0
ssl_verify: false
修改完后,执行 conda clean -i 清除索引缓存,保证用的是镜像站提供的索引。
设置完后,我们可以执行 conda config --get channels
常用源地址
# 清华
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
3.21 清理当前环境中下载未完成的包
conda clean -i
3.22 查看当前环境用的源地址
conda config --get channels
或
conda config --show channels
4. 运行 python
python -V #查看python 版本
python #运行
这一节配置好了conda环境,python也可以运行了,接下来就可以上代码了。