自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(61)
  • 收藏
  • 关注

原创 我的创作纪念日

未来我会一直探索生物信息学,相信在人工智能时代,生物信息学会有更大的突破,将深度破解生命密码,解构生命灵魂,重塑未来!生物信息学尽管目前有一定程度的定义,但随着时间,会逐渐演变,我们会一直追寻探索它的奥妙!其实就是2年前的今天写出的《生物信息是什么?当前创作和我的工作、学习之间的联系。过去写得最有意义的一段文章是?在创作的过程中都有哪些收获。代码片获得414次分享。

2025-03-28 14:50:25 197

原创 TxDb 格式文件

TxDb) 是提供的一种用于存储转录组注释信息的 R 对象,主要用于基因结构解析、基因注释提取、外显子/CDS/UTR 分析等。它通常存储来自GTF/GFF3 文件的转录本信息基因(Gene)转录本(Transcript)外显子(Exon)CDS(Coding Sequence,编码区)5'UTR 和 3'UTR内含子(Intron)转录起始位点(TSS, Transcription Start Site)转录终止位点(TES, Transcription End Site)📌TxDb。

2025-03-26 09:35:43 602

原创 BLAST比对

BLAST(Basic Local Alignment Search Tool,基本局部比对搜索工具)是一种广泛用于生物信息学的序列比对算法,主要用于核酸或蛋白质序列在数据库中的搜索与比对。通过**索引表(Hash Table)**快速查找候选区域,避免直接进行全局比对。如果你的查询序列是蛋白,但目标数据库是DNA(将DNA翻译后比对),使用。**HSP(高得分片段对)**是指具有较高匹配得分的局部比对区域。如果你的查询序列是DNA但要比对蛋白数据库(先翻译再比对),使用。

2025-03-16 16:41:01 1912

原创 单细胞转录组(scRNA-seq)与空间转录组(ST)的区别

单细胞级细胞簇(spot)或超高分辨率。

2025-03-07 16:40:13 1731

原创 空间转录组

空间转录组(Spatial Transcriptomics, ST)是一种结合空间信息和基因表达信息的技术,能够在组织切片上解析基因表达的空间分布模式。这一技术克服了传统单细胞转录组(scRNA-seq)失去空间信息的局限,使得科学家可以在组织结构背景下研究基因表达的变化。

2025-03-06 17:23:00 1384

原创 单细胞转录组分析(scRNA-seq)

单细胞转录组测序(Single-cell RNA sequencing,scRNA-seq)是一种高通量测序技术,可以在单细胞水平解析基因表达情况,揭示细胞异质性,探索稀有细胞类型,并研究细胞状态转换及动态调控机制。与传统的。

2025-03-04 17:17:18 1799

原创 MNase-seq

MNase-seq(Micrococcal Nuclease Sequencing,微球菌核酸酶测序)是一种用于研究。

2025-02-20 17:12:21 1270

原创 测序数据比对结果格式(sam, bam, bw)

SAM (Sequence Alignment/Map) 文件是一种用于存储测序数据比对结果的文本格式,广泛用于基因组学分析。它由一个和组成。头部行以:文件格式信息,VN代表 SAM 版本,SO表示排序方式(coordinate或unsorted@SQ:参考序列信息,SN代表染色体名称,LN代表该染色体的长度。@PG:比对软件信息,如bwa。比对数据部分由 11 个必需字段和可选字段组成,每行代表一个比对的序列。例如:​​​​​​​1读取序列的名称(如测序 read ID)2。

2025-02-12 21:47:13 1641

原创 DNase-seq

DHSs 是染色质上对 DNase I 酶高度敏感的区域,通常与基因调控元件(如启动子、增强子、绝缘子等)相关。:将 DNase-seq 数据与其他组学数据(如 RNA-seq、ChIP-seq)整合,全面解析基因调控网络。DHSs 通常与转录因子结合位点重叠,DNase-seq 数据可以用于预测转录因子的结合位点。DNase-seq 可以全基因组范围内检测染色质的开放状态,揭示细胞类型特异的染色质结构。:DHSs 是染色质上对 DNase I 酶高度敏感的区域,通常位于开放的染色质区域。

2025-02-04 12:56:43 1060

原创 代谢组分析

是通过检测和分析生物体中所有小分子代谢物(metabolites,如糖、脂质、氨基酸、有机酸等)的组成和变化,研究生物系统在生理、病理或环境条件下的代谢状态和动态变化的科学技术。代谢物是基因组、转录组和蛋白组功能的最终表达,因此代谢组分析被认为是生物学研究的最后一个层次,提供了最接近表型的信息。

2025-01-06 17:06:24 1951

原创 ATAC-seq

(Assay for Transposase-Accessible Chromatin with high-throughput sequencing)是一种强大的基因组学技术,用于研究染色质的开放状态以及核小体定位、DNA结合蛋白位置等染色质特征。以下是一个ATAC-seq分析代码流程,基于主流的工具和框架,涵盖从原始数据处理到下游分析。:将ATAC-seq与RNA-seq或Hi-C结合,进行全基因组调控网络分析。交叉比较ATAC-seq和RNA-seq结果,关联开放染色质与基因表达。

2024-12-27 09:13:28 1633

原创 ChIP-seq

ChIP-seq,全称 Chromatin Immunoprecipitation Sequencing,是一种结合染色质免疫共沉淀(ChIP)技术与高通量测序(NGS, Next-Generation Sequencing)的分子生物学技术。它被广泛应用于研究蛋白质与DNA之间的相互作用,包括转录因子结合位点、染色质修饰区域等,从而揭示基因表达调控和表观遗传机制。ChIP-seq 是研究基因调控和表观遗传学的重要工具,为揭示基因组功能提供了强有力的支持。

2024-12-20 15:07:00 1028

原创 Cut&Run与Cut&Tag

Cut&Run(Cleavage Under Targets & Release Using Nuclease)和Cut&Tag(Cleavage Under Targets & Tagmentation)是两种用于研究基因组蛋白-DNA相互作用的技术。Cut&Run是一种基于抗体的技术,用于研究转录因子、核小体及其他染色质相关蛋白与DNA的结合。Cut&Run和Cut&Tag以其高灵敏度、低背景和灵活性,推动了表观遗传学研究的发展,为解析基因调控网络和染色质状态提供了强有力的工具。

2024-12-17 08:00:00 1300

原创 PRO-seq

PRO-seq是一种高分辨率、高灵敏度的技术,可在基因组范围内直接检测活跃的RNA聚合酶动态分布。尽管实验复杂且对样本量有一定要求,但它在转录调控、基因表达、药物筛选等领域具有广泛的应用潜力。以下是。

2024-12-16 08:00:00 1372

原创 DNA甲基化测序分析

进一步使用 R 可视化甲基化热图或基因组分布。​​​​​​​。

2024-12-13 08:00:00 1732

原创 Cut&Tag-Seq

(Cleavage Under Targets and Tagmentation Sequencing)是一种结合抗体标记、限制性酶切和高通量测序的表观基因组学技术,用于检测染色质修饰和蛋白质-DNA相互作用。Cut&Tag-Seq基于目标蛋白特异性抗体的结合,通过将DNA片段化并直接准备测序文库,实现蛋白质结合位点或表观修饰的高分辨率检测。Cut&Tag-Seq的出现为表观遗传学研究提供了革命性的工具,其高效、低背景和广泛适用性使其成为研究染色质状态和基因调控机制的首选方法之一。

2024-12-12 08:00:00 981

原创 病原组学检测

(Pathogenomics Testing)是通过分析微生物基因组(包括病毒、细菌、真菌和寄生虫等病原体)来了解其基因组成、遗传变异、进化关系和病原性等方面的信息的方法。病原组学检测是现代分子生物学研究的重要工具,它为快速、准确地识别病原体、了解其流行性和传播途径,以及制定有效的治疗和预防策略提供了有力支持。

2024-12-11 08:00:00 863

原创 转座子测序

转座子测序是一种强大的功能基因组学工具,能够在全基因组范围内高效筛选与特定条件或表型相关的重要基因。随着测序技术和生物信息学的不断进步,Tn-seq将在基因功能研究、生物医学和农业领域发挥更大的作用。

2024-12-08 14:56:22 1306

原创 靶向测序分析

相比全基因组测序(WGS),靶向测序数据量更小,但灵敏度更高,适合深入研究特定区域的遗传变异。靶向测序的分析流程包括数据预处理、变异检测、注释及后续分析,每一步都需要严格按照实验和生物信息学标准进行操作。靶向测序是一种高效、灵活的工具,在基因组医学和基础研究中具有不可替代的作用。:根据实验需求,选择特定的基因组区域(如癌症相关基因或已知疾病易感区域)。以下是一个完整的靶向测序分析流程的代码框架,使用常用的生物信息学工具(如。:检测目标区域的突变(如SNP、插入缺失、拷贝数变异等)。

2024-12-02 15:24:32 1186

原创 曼哈顿图(GWAS结果可视化)

是GWAS分析的重要步骤,旨在直观地展示和解释统计分析的结果,帮助研究者识别显著的遗传变异及其与表型之间的关系。

2024-11-29 08:00:00 4006

原创 图形基因组

图形基因组为基因组研究提供了新的视角,克服了传统线性参考基因组的局限性。它在多样性表示和复杂变异检测方面表现出巨大的潜力,为精准医学和生物学研究奠定了坚实的基础。以下是一个使用。

2024-11-28 09:50:49 1252

原创 HiFi测序

HiFi测序(High-Fidelity Sequencing)是一种由PacBio公司开发的先进DNA测序技术,基于其单分子实时测序(SMRT, Single Molecule Real-Time Sequencing)平台。高质量的HiFi读长适合用于变异检测,包括点突变(SNV)、插入/缺失(Indel)和结构变异(SV)。相比于Illumina短读长技术,HiFi测序的通量较低,可能不适合大规模样本的高通量需求。通过对一个DNA分子多次测序,生成高质量的共识序列,从而显著提高了测序准确性。

2024-11-27 10:02:56 1674

原创 HiC测序

Hi-C 是一种基因组三维结构测序技术,用于研究染色质在细胞核中的三维组织。它通过捕获基因组中不同区域的物理相互作用,揭示染色质折叠和基因调控网络的关系。

2024-11-26 09:27:52 1519

原创 单倍型分析

*单倍型分析(Haplotype Analysis)**是研究遗传变异的一种方法,用于解析一组单核苷酸多态性(SNPs)或其他遗传标记如何共同遗传,并探讨其与性状或疾病的关联。单倍型是指一条染色体上紧密相连的一组遗传变异位点,它们以特定组合形式共同遗传。

2024-11-25 16:13:14 1171 2

原创 全基因组关联分析(GWAS)

*全基因组关联分析(Genome-Wide Association Study, GWAS)**是一种利用统计学方法研究基因变异(通常是单核苷酸多态性,SNPs)与特定性状或疾病之间关联的分析方法。GWAS是一种无假设驱动的研究方法,主要目标是通过分析整个基因组范围内的遗传变异与表型之间的关系,识别与疾病或性状相关的基因位点。GEMMA 是针对混合线性模型(MLM)优化的工具,适合分析复杂性状和控制遗传结构。PLINK 是经典的工具,广泛用于基因型数据的质控、格式转换和初步分析。分析代码类似GEMMA。

2024-11-24 14:43:39 4306

原创 基因组组装

基因组组装(Genome Assembly)是生物信息学的一个核心任务,旨在将从高通量测序技术(如Illumina、PacBio、Nanopore等)获得的短序列片段(reads)拼接成完整的基因组序列。这个过程复杂且需要考虑不同的技术、算法和错误校正。:确保原始测序数据的高质量。去除低质量reads。过滤掉可能的污染序列(如细菌或病毒污染)。去除接头序列(adapters)。FastQC(质量评估)、(去低质量片段)、BBMap(污染检测)。:估计基因组大小、复杂度、重复序列比例。

2024-11-22 11:16:51 1757

原创 全外显子测序分析

提供全面的基因组变异信息,包括编码区和非编码区的变异、拷贝数变异(CNV)、结构变异(如染色体易位、倒位)和重复序列变异。**区别:**WES 专注于编码区变异,WGS 涵盖全基因组,分析范围更广,尤其是非编码区和复杂变异。WGS 数据量大,分析更复杂,尤其是非编码区变异的功能预测、结构变异的准确性,以及注释的全面性。**区别:**WGS 的复杂性和解读难度远高于 WES,需要更多的计算资源和专业知识支持。**区别:**WES 的分析需要特定的捕获和提取步骤,WGS 则是全面的分析。我们以常用的工具(如。

2024-11-21 16:27:50 2237

原创 宏基因组分析

宏基因组学(Metagenomics)是通过高通量测序技术和生物信息学方法,从环境样本中直接提取所有微生物群体的基因组信息,并对这些基因组进行分析的科学。它跳过了传统的分离和培养步骤,使研究者能够研究复杂的微生物群落的组成、功能和生态作用。

2024-11-20 15:29:33 2208

原创 群体基因组分析

识别种群中的单核苷酸多态性(SNPs)、插入/缺失(Indels)、结构变异(SVs)等。

2024-11-19 16:53:38 1758 2

原创 泛基因组分析

泛基因组(Pangenome)是指一个物种内所有个体的基因组总和,包括核心基因组(core genome)和可变基因组(variable genome)。泛基因组分析是一种研究物种内部基因多样性的方法,广泛应用于微生物基因组学、植物和动物基因组学等领域。动物和植物泛基因组分析为理解物种内部的遗传多样性提供了丰富的信息,帮助揭示基因组的功能和适应性。植物研究:可以用于提高作物的抗逆性、产量和营养价值。动物研究:可以帮助改善家畜的性状选择和保护濒危物种。

2024-11-14 08:00:00 3486

原创 比较基因组分析

进化生物学:研究物种进化关系和基因组演化。生物医学:揭示疾病相关基因及其突变机制。农业科学:通过比较作物基因组,优化农作物品种。环境微生物学:分析环境微生物群体的基因组多样性。

2024-11-13 08:00:00 2309

原创 SCI文章常用统计差异检验

检验方法适用场景数据要求独立样本 t 检验比较两组独立样本的均值正态分布、方差齐配对样本 t 检验比较配对样本的均值差异正态分布单因素方差分析(ANOVA)三组及以上均值比较正态分布、方差齐Mann-Whitney U 检验两组独立样本的中位数比较无分布假设Wilcoxon 符号秩检验配对样本的中位数比较无分布假设Kruskal-Wallis H 检验三组及以上样本的中位数比较无分布假设卡方检验(Chi-Square Test)分类变量的独立性检验频数数据。

2024-11-12 09:58:29 1651

原创 基因组分析

基因组分析流程通常根据研究目的的不同有所调整,但一个典型的流程包括数据准备、质量控制、比对、变异检测、注释和下游分析。

2024-11-04 17:18:39 1168

原创 RNA-seq分析

RNA-seq(RNA测序)是用于研究基因表达和转录组的强大工具。以下是一个详细的RNA-seq分析流程,包含每个步骤的说明和相应的代码。我们将使用Python和R语言中的一些常用工具来处理数据。

2024-11-03 16:21:42 2057

原创 RNA-seq

RNA-seq(RNA测序)是一种用于分析转录组的方法,能够对生物样品中的RNA分子进行定量和定性分析。

2024-11-01 08:00:00 1192

原创 多组学数据

*多组学(multi-omics)**指通过整合不同组学层面的数据(如基因组学、转录组学、蛋白质组学等),全面揭示生物体的生物学特性及其在不同条件下的动态变化。它是一种跨学科研究方法,帮助解析基因与环境、基因与表型、代谢与生理等复杂关系,在精准医疗、植物科学、微生物学等领域应用广泛。:核磁共振(NMR)、气相色谱-质谱(GC-MS)、液相色谱-质谱(LC-MS)。:质谱分析(MS)、双向电泳(2D-GE)、Western blot。:全基因组测序(WGS)、全外显子组测序(WES)、SNP检测。

2024-10-31 08:00:00 1216

原创 RNA类别

RNA种类丰富多样,不仅是遗传信息传递的载体,还在基因调控、细胞功能维持和生物进化中发挥重要作用。从mRNA的编码功能,到miRNA和siRNA的基因沉默作用,再到lncRNA和circRNA的复杂调控功能,每种RNA都有其独特的生物学意义。此外,RNA还在医学研究和应用中展现出巨大潜力,为人类健康带来新的希望。

2024-10-30 08:00:00 2396

原创 双螺旋结构和中心法则

某些RNA病毒(如HIV)能将RNA逆转录为DNA,这一现象由逆转录酶(reverse transcriptase)催化。含氮碱基(Nitrogenous base):包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)。于1958年提出,描述了遗传信息在生物体内的传递路径,即如何从DNA传递到RNA,再传递到蛋白质。核糖体根据mRNA中的三联密码子序列(codon),将对应的氨基酸连接起来,生成蛋白质链。DNA在细胞分裂时复制,生成两条相同的DNA分子,确保遗传信息从母细胞传递到子细胞。

2024-10-29 08:00:00 1023

原创 fastq和fasta格式文件

record.letter_annotations["phred_quality"] = [0] * len(record.seq) # 默认质量为0。print(record.letter_annotations["phred_quality"]) # 质量分数。FASTQ格式可以直接转换为FASTA格式,忽略质量信息。FASTA格式可以转换为FASTQ格式,默认质量分数为。

2024-10-27 18:51:36 1363

原创 测序数据比对软件

测序数据比对

2024-10-27 18:36:37 1567

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除