机器学习(一)绪论、算法总结

经验E在任务T上有提高评价P

分类

一级类别二级类别特点
监督学习人们教计算机学习回归(数据连续)
分类(数据离散)
需要预测目标变量:
数值型数据类别型数据
无监督学习计算机自己学习密度估计 (与分组的相关联程度)
聚类 (划分为分组)
不需要预测目标变量
强化学习

算法总结

一级类别二级类别三级类别
回归线性回归一元线性回归
多元线性回归
分类二分类
多分类

注意:多分类、多特征(多维)的区别

如何选择算法

  1. 缩小算法的选择范围。
    是否需要预测目标变量的值–>选择“监督学习”?“非监督学习”?–>再进一步选择分类or回归?聚类or密度估计?
  2. 尝试多种算法的执行效果。对于每种算法,都可以改进提升。

数据集

特征1特征2目标变量
实例1
实例2
实例3

m m m:样本数, n n n:特征数
( x , y ) (\boldsymbol{x},y) (x,y):样本集
( x ( i ) , y ( i ) ) (x^{(i)}, y^{(i)}) (x(i),y(i)):第 i i i个样本, i = 1 , 2 , . . . i=1,2,... i=1,2,...

例子

不能人工编程实现:CN、NLP、手写识别
鸡尾酒聚会算法:分离一个音源的多种声音
新闻聚类:多个类似主题的新闻聚类展示,并自动得到一个“主题词”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值