《机器学习》第一章绪论 总结
1.2 基本术语
示例(instance)/ 样本(sample):关于一个事件或对象的描述,也可以认为是一个记录
数据集(data set):样本/示例/记录的集合,D={x_1,x_2,…,x_m}表示包含m个示例的数据集。若每个示例x_i=(x_i1; x_i2;…;x_id)是样本空间χ中的一个向量,则d称为样本 x_i的维数,x_ij是x_i在第j个属性上的取值
属性(attribute)/ 特征(feature):反映事件或对象在某方面的表现或性质的事项。
属性值(attribute value):属性上的取值
属性空间(attribute space)/ 样本空间(sample space)/ 输入空间:属性张成的空间。例如把“色泽”“根蒂”“敲声”作为三个坐标轴,则它们张成一个用于描述西瓜的三维空间
特征向量(feature vector):每个示例都可以在样本空间中找到自己的坐标位置,个示例称为一个特征向量
模型:泛指从数据中学得的结果
学习(learning)/ 训练(training):从数据中学得模型的过程
训练数据(training data):训练中使用的数据
训练样本(training sample):训练数据中每一个样本
训练集(training set):训练样本组成的集合
假设(hypothes
《机器学习》第一章绪论 总结
最新推荐文章于 2022-08-16 14:44:53 发布