python数据分析:Matplotlib

pyplot

示例

无子图

import matplotlib.pyplot as plt
import numpy as np

data = np.arange(0,10)

# 1. 创建画布
fig = plt.figure('名称1',figsize=(8,10))      # 若不创建fig,用默认画布

# 2. 创建子图


# 3. 添加画布内容
plt.title('名称2')
plt.xlabel('横坐标')
plt.ylabel('纵坐标')
plt.xlim((0,10))		# x坐标范围
plt.ylim((0,100))
plt.xticks([0,2,4,8,10])	# x坐标的刻度
plt.yticks([0,20,40,80,100])

# 4. 绘制图像
plt.plot(data, data)        # 折线图
plt.plot(data, data**2)     # 都在一个图中(没有子图)

# 5. 添加图例
plt.legend(['y=x', 'y=x^2'])

# 6. 保存
plt.savefig('figure1.png')

# 7. 显示图像
plt.show()

在这里插入图片描述

有子图

import matplotlib.pyplot as plt
import numpy as np

data = np.arange(0,10)

# 1. 创建画布
fig = plt.figure('名称1',figsize=(8,10))      # 若不创建fig,用默认画布



# 子图1
# 2. 创建子图
fig.add_subplot(2,2,1)      # 子图个数2*2,第1个子图(左上角)
# 3. 添加画布内容
plt.title('名称2')
plt.xlabel('横坐标')
plt.ylabel('纵坐标')
plt.xlim((0,10))		# x坐标范围
plt.ylim((0,100))
plt.xticks([0,2,4,8,10])	# x坐标的刻度
plt.yticks([0,20,40,80,100])
# 4. 绘制图像
plt.plot(data, data)        # 折线图
plt.plot(data, data**2)     # 都在一个图中(没有子图)
# 5. 添加图例
plt.legend(['y=x', 'y=x^2'])


# 子图2
# 2. 创建子图
fig.add_subplot(2,2,2)      # 第2个子图(右上角)
# 3. 添加画布内容
plt.title('名称3')
plt.xlabel('横坐标')
plt.ylabel('纵坐标')
plt.xlim((0,10))		# x坐标范围
plt.ylim((0,100))
plt.xticks([0,2,4,8,10])	# x坐标的刻度
plt.yticks([0,20,40,80,100])
# 4. 绘制图像
plt.scatter(data, data**2)
# 5. 添加图例
plt.legend(['y=x^2'])




# 6. 保存
plt.savefig('figure2.png')

# 7. 显示图像
plt.show()

在这里插入图片描述

绘制流程

  1. 创建画布
  2. 创建子图
  3. 添加画布内容
  4. 绘制图行
  5. 添加图例
  6. 保存图形
  7. 显示图形

创建画布

在这里插入图片描述

创建子图

在这里插入图片描述

添加画布内容

在这里插入图片描述

绘制图形

在这里插入图片描述

添加图例

plt.legend()

保存图形

plt.savefig()
在这里插入图片描述

显示图形

plt.show()

例子

例2:创建子图

import numpy as np
import matplotlib.pyplot as plt

data = np.random.random(10)
fig = plt.figure(figsize=(8,6))

fig.add_subplot(2,2,1)
plt.title('exp1')
plt.xlabel('X')
plt.ylabel('Y')
plt.xlim((0,1))
plt.ylim((0,1))
plt.xticks([0, 2, 4, 6, 8, 10])
plt.yticks([0, 0.5, 1.0])
plt.pie(data)
plt.legend(['data'])

fig.add_subplot(2,2,2)
plt.title('exp2')
plt.xlabel('X')
plt.ylabel('Y')
plt.xlim((0,1))
plt.ylim((0,1))
plt.xticks([0, 2, 4, 6, 8, 10])
plt.yticks([0, 0.5, 1.0])
plt.scatter(data, data)# y=x
plt.legend(['y=x'])

fig.add_subplot(2,2,3)
plt.title('exp3')
plt.xlabel('X')
plt.ylabel('Y')
plt.xlim((0,1))
plt.ylim((0,1))
plt.xticks([0, 2, 4, 6, 8, 10])
plt.yticks([0, 0.5, 1.0])
plt.bar(data, data**2)# y=x^2
plt.legend(['y=x^2'])

plt.savefig('123.png')
plt.show()

plot(x)、plot(x,y)
bar(x,y)
scatter(x,y)
pie(x)
hist

绘二维图

条形图

一组数据的对比

arr = np.random.randint(0,10,size=(2,3))
df = pd.DataFrame(arr, index=['a1','a2'], columns=['b1','b2','b3'])
print(df)

# 垂直条形图
plt.bar(x=df.index, height=df['b1'])
plt.show()

# 水平
plt.barh(y=df.index, width=df['b1'])
plt.show()

在这里插入图片描述

直方图

折线图

散点图

饼图

箱线图

arr = np.random.randint(0,10,size=(2,3))
df = pd.DataFrame(arr, index=['a1','a2'], columns=['b1','b2','b3'])
print(df)

plt.boxplot(df, labels=df.columns)
plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值