题目大意:
这题教会了我一个很有用的技巧:有两个所求的值要优化,比如让a尽量小,b也尽量小
那么可以转化为让x = M*a+b尽量小,其中M应该是一个比“a的最大值和b的最小值之差”还要大的数
最终的答案为a = ans/M, b = ans%M
回到这题,要求放的灯总数最小,被两盏灯同时照亮的边数尽量大。
因为每条边要么被一盏灯照亮,要么被两盏灯照亮,所以可以转换为:
求:放的灯总数量最少,被一盏灯照亮的边数尽量少。
就可以变成球 M*a+b 的最小值,a为放置的灯数量,b为被一盏灯照的边数
f[u][1]表示u点放灯时的整个子树最小值
f[u][0]表示u点不放灯时的整个子树最小值
如果u放,那么u个子结点可以选择放,也可以不放,选择其中较小的值。如果选的是不照,就要增加一条只有一个灯照的边
如果u不放,那么其子结点就必须选择要放,而且每条边都只有一个灯照
别人题解写的。。才理解
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<queue>
#include<cmath>
#include<cstring>
using namespace std;
typedef long long int64;
const int INF = 0x3f3f3f3f;
const int MAXN = 1010;
vector<int> adj[MAXN];
bool vis[MAXN];
int n, m;int f[MAXN][2];
const int M = 2000;
void dfs(int u) { //遍历整个树
vis[u] = true;
f[u][0] = 0;
f[u][1] = M; //有放灯就要乘以M
for(int i = 0;i < adj[u].size(); ++i) {
int v = adj[u][i];
if(vis[v]) continue;
dfs(v);
f[u][0] += f[v][1] + 1; //父节点要是没放灯 子根节点一定要放 +1是由于子节点和父节点之间就只有一盏灯 要+1
if (f[v][0] < f[v][1]) { //子根节点要是没灯也要加1
f[u][1] += f[v][0] + 1;
}
else {
f[u][1] += f[v][1];
}
}
}
int main(){
int nCase;
scanf("%d", &nCase);
while(nCase--) {
scanf("%d%d", &n, &m);
for(int i = 0;i < n; ++i)
adj[i].clear();
for(int i = 0;i < m; ++i) {
int u, v;
scanf("%d%d", &u, &v);
adj[u].push_back(v);
adj[v].push_back(u);
}
memset(vis, 0, sizeof(vis));
int ans = 0;
for(int i = 0;i < n; ++i)
if(!vis[i]){
dfs(i);
ans += min(f[i][0], f[i][1]);
} printf("%d %d %d\n", ans/M, m-(ans%M), ans%M);
} return 0;}