系列文章 分享 模型,了解更多👉 模型_思维模型目录。随机世界的规律,大自然里的钟形曲线。
1 正态分布的应用
1.1 质量管理之六西格玛
六西格玛是一种旨在通过识别和消除缺陷原因来提高制造过程或业务流程质量的管理策略。我们先来了解下六西格玛相关的基本概念:
- 西格玛等级:西格玛等级是一个衡量过程能力的指标,表示缺陷率的多少。一个过程的西格玛等级越高,其缺陷率越低。
- 缺陷:在六西格玛中,缺陷是指任何不符合规格的产品或服务。
- 过程能力:指一个过程在没有特殊原因影响下,能够持续生产符合规格要求的产品或服务的能力。
接下来说明下正态分布与六西格玛的关系:
- 在六西格玛中,假设大多数过程的输出是正态分布的。这意味着过程的输出变量(如产品尺寸、重量等)会围绕均值对称分布,并且大部分输出值会集中在均值附近。
- 利用正态分布的特性,六西格玛方法可以预测和控制过程的缺陷率。例如,如果一个过程的输出是正态分布的,那么大约99.73%的产品将位于均值的±3个标准差范围内。
这里给出一个六西格玛方法的使用案例,便于深入理解该方法。假设一个制造过程生产的小部件的尺寸是关键的质量指标,该尺寸服从正态分布。通过测量和分析,我们知道部件的尺寸均值为100毫米,标准差为1毫米。
- 过程能力分析:使用正态分布的特性,我们可以计算出在均值±3σ(简单理解为误差±3毫米)范围内的部件比例,这将帮助我们了解过程的稳定性和一致性。
- 缺陷预防:如果我们设定规格限为98毫米到102毫米,那么任何超出这个范围的部件都被视为缺陷。通过正态分布,我们可以预测大约有多少部件会超出规格限,从而采取措施减少这些缺陷。
- 持续改进:通过收集数据和分析过程输出的分布,六西格玛团队可以识别导致缺陷的潜在原因,并采取措施来减少变异,提高过程的西格玛等级。
六西格玛方法强调使用数据和统计工具来驱动决策,正态分布在这一过程中发挥了核心作用,帮助组织实现更高的质量标准和更低的缺陷率。
1.2 风险管理中的VaR估算(通俗解读)
你是一个小岛国的财务顾问,这个国家有一个由500个当地最大企业组成的股票市场指数,我们称之为“小岛500指数”。这个指数类似于现实世界中的S&P 500指数。作为财务顾问,你的任务是帮助岛上的居民了解他们的投资可能面临的风险。
首先,你需要向居民解释什么是VaR。你可以这样描述:“VaR就像是一个天气预报,告诉我们在大多数情况下,我们