逻辑回归模型详解(Logistic Regression)

目录

广义线性模型

极大似然法

逻辑回归的假设函数

逻辑回归的损失函数

交叉熵损失函数

为什么LR模型损失函数使用交叉熵不用均方差

交叉熵损失函数的数学原理

交叉熵损失函数的直观理解

交叉熵简介

对数损失函数和交叉熵损失函数

逻辑回归优缺点

其他

逻辑回归与线性回归的区别与联系

LR一般需要连续特征离散化原因


广义线性模型

逻辑回归与线性回归都是一种广义线性模型(generalized linear model,GLM)。具体的说,都是从指数分布族导出的线性模型,线性回归假设Y|X服从高斯分布,逻辑回归假设Y|X服从伯努利分布。

伯努利分布:伯努利分布又名0-1分布或者两点分布,是一个离散型概率分布。随机变量X只取0和1两个值,比如正面或反面,成功或失败,有缺陷或没有缺陷,病人康复或未康复。为方便起见,记这两个可能的结果为0和1,成功概率为p(0<=p<=1),失败概率为q=1-p。

高斯分布:高斯分布一般指正态分布。

因此逻辑回归与线性回归有很多相同之处,去除Sigmoid映射函数的话,逻辑回归算法就是一个线性回归。可以说,逻辑回归是以线性回归为理论支持的,但是逻辑回归通过Sigmoid函数引入了非线性因素,因此可以轻松处理0/1分类问题。

这两种分布都是属于指数分布族,我们可以通过指数分布族求解广义线性模型(GLM)的一般形式,导出这两种模型,具体的演变过程如下:

(此部分参考:https://zhuanlan.zhihu.com/p/81723099

 

极大似然法

极大似然估计,通俗理解来说,就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值。

 极大似然估计的原理,用一张图片来说明,如下图所示:

原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概率论在统计学中的应用。

极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。
 

逻辑回归的假设函数

首先我们要先介绍一下Sigmoid函数,也称为逻辑函数(Logistic function):

其函数曲线如下:

从上图可以看到sigmoid函数是一个s形的曲线,它的取值在[0, 1]之间,在远离0的地方函数的值会很快接近0或者1,它的这个特性对于解决二分类问题十分重要。

逻辑回归的假设函数形式如下:

所以:

其中 x 是我们的输入,θ 为我们要求取的参数。

一个机器学习的模型,实际上是把决策函数限定在某一组条件下,这组限定条件就决定了模型的假设空间。当然,我们还希望这组限定条件简单而合理。而逻辑回归模型所做的假设是:

这个函数的意思就是在给定 x 和 θ 的条件下,y = 1的概率。

 

逻辑回归的损失函数

通常提到损失函数,我们不得不提到代价函数(Cost Function)及目标函数(Object Function)。

损失函数(Loss Function) 直接作用于单个样本,用来表达样本的误差

代价函数(Cost Function)是整个样本集的平均误差,对所有损失函数值的平均

目标函数(Object Function)是我们最终要优化的函数,也就是代价函数+正则化函数(经验风险+结构风险)

概况来讲,任何能够衡量模型预测出来的值 h(θ) 与真实值 y 之间的差异的函数都可以叫做代价函数 C(θ) 如果有多个样本,则可以将所有代价函数的取值求均值,记做 J(θ) 。因此很容易就可以得出以下关于代价函数的性质:

  • 选择代价函数时,最好挑选对参数 θ 可微的函数(全微分存在,偏导数一定存在)
  • 对于每种算法来说,代价函数不是唯一的;
  • 代价函数是参数 θ 的函数;
  • 总的代价函数 J(θ) 可以用来评价模型的好坏,代价函数越小说明模型和参数越符合训练样本(x,y);
  • J(θ) 是一个标量;

经过上面的描述,一个好的代价函数需要满足两个最基本的要求:能够评价模型的准确性,对参数 θ 可微。

在线性回归中,最

### 回答1: Logistic回归是一种逻辑回归方法。它是一种特殊的回归方法,用于对于分类问题中的因变量建立预测模型。这种方法基于学习一个由输入变量到二元输出变量的条件概率来构建预测模型,用于对一个新的样本进行分类。它对于分类问题中的因变量建立预测模型非常有效。 ### 回答2: 逻辑回归是一种用于解决二分类问题的监督学习算法。它是一种基于概率统计的分类模型,可以用于预测分类结果。逻辑回归的输出结果是一个0到1之间的概率值,其含义是该样本属于某一类别的概率。 逻辑回归模型的基本假设是数据服从伯努利分布,也就是数据只有两种可能的取值,被称为正类和负类。对于给定的训练数据集,逻辑回归模型的目标是最大化似然函数,即最大化样本属于正类(或负类)的概率。利用最大似然估计方法,我们可以求解出逻辑回归模型的参数。在实际应用中,我们通常使用梯度下降等优化算法来求解模型参数。 逻辑回归模型有多种变体,如L1正则化逻辑回归、L2正则化逻辑回归、多项式逻辑回归等。其中,L1正则化逻辑回归可以实现特征选择,可以削减一些不重要的特征,从而简化模型,提高计算速度和模型的泛化能力。 在机器学习领域,逻辑回归是一个常用的模型。它广泛应用于各种领域,如网络广告点击率预测、信用风险评估、医疗诊断等。逻辑回归模型简单易实现,具有较高的解释性,是一个较为理想的分类算法。 ### 回答3: 逻辑回归Logistic Regression)是一种经典的分类算法,在机器学习和统计学领域中得到广泛的应用。它旨在从已有的数据中构建一个能够预测类别的模型,输出结果为概率值,可以用于二分类或多分类问题的解决。 逻辑回归的基本原理是利用一个特定的函数对输入特征进行线性组合,然后将结果输入到一个Sigmoid函数中进行映射,将结果值压缩到0到1的范围内,表示输入属于某一类别的概率。这个Sigmoid函数可以被看作是一个阀门,控制着数据流向最终输出。它将具有很强预测能力的线性组合函数输出转化为概率输出的过程,将出现在中间层的结果值映射到[0,1]范围内,以表达某个样本属于某个类别的概率。 在训练模型时,逻辑回归使用的是最大似然估计的方法来确定模型的参数。在分类训练数据时,需要对样本经过一系列的处理,例如特征提取、特征转换、数据归一化等步骤。训练数据可以通过梯度下降法、牛顿迭代法等优化方法来确定最佳参数。通过此训练过程,模型可以学习到输入特征与输出概率之间的映射关系。 逻辑回归的优点包括了功能简单、速度快、易于实现和修改等等。它是机器学习中最为基本的分类算法之一,在数据挖掘、信用评估、自然语言处理、广告推荐等领域都有广泛的应用。逻辑回归作为一个二分类算法,常被用于解决分类问题。然而,在实际业务中,如何选择不同的逻辑回归模型及参数,对算法的效果和优化有着重要的影响。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值