GKT论文技术实现

Graph-based Knowledge Tracing: Modeling Student Proficiency Using Graph Neural Network

1. 研究背景与目标

  • 知识追踪(Knowledge Tracing):预测学生在学习过程中的表现(如答题正确率),以个性化推荐学习内容。
  • 问题:传统方法(如DKT)使用循环神经网络(RNN),但未考虑知识点之间的依赖关系(如数学中的“解二次方程”依赖“解线性方程”)。
  • 解决方案:用**图神经网络(GNN)**建模知识点间的图结构,提升预测性能和可解释性。

2. 核心方法:GKT(基于图的知识追踪)

2.1 总体流程

  1. 聚合(Aggregate):结合当前回答与知识点特征。
  2. 更新(Update):根据图结构更新知识点状态。
  3. 预测(Predict):输出下一时刻各知识点的正确概率。

2.2 关键公式解析

(1)聚合步骤

hk′t={[hkt,xtEx](k=i)[hkt,Ee(k)](k≠i) \mathbf{h}_{k}^{'t} = \begin{cases} \left[\mathbf{h}_{k}^{t}, \mathbf{x}^{t}\mathbf{E}_{\mathbf{x}}\right] & (k=i) \\ \left[\mathbf{h}_{k}^{t}, \mathbf{E}_{e}(k)\right] & (k\neq i) \end{cases}hkt={[hkt,xtEx][hkt,Ee(k)](k=i)(k=i)

  • 含义:当学生回答知识点iii时:
    • 对知识点iii:将其隐藏状态hit\mathbf{h}_i^thit与输入嵌入xtEx\mathbf{x}^t\mathbf{E_x}xtEx拼接。
    • 对其他知识点k≠ik \neq ik=i:仅使用自身的嵌入Ee(k)\mathbf{E}_e(k)Ee(k)
  • 作用:将当前回答的信息(如正确与否)与知识点固有特征结合。

(2)更新步骤

KaTeX parse error: Double superscript at position 74: …thbf{h}^{'}_{i}^̲{t}) & (k=i) \\…

  • fselff_{\text{self}}fself:处理当前知识点iii的更新(如通过多层感知机MLP)。
  • fneighborf_{\text{neighbor}}fneighbor:定义相邻知识点间的信息传播方式(关键创新点)。
    • 示例:若使用统计方法(如转移概率图),则Ai,j\mathbf{A}_{i,j}Ai,j表示知识点iiijjj的转移概率。
    • 学习方法:如多头注意力(MHA)或变分自编码器(VAE)动态学习边权重。

(3)预测步骤

ykt=σ(Wouthkt+1+bk) \mathbf{y}_{k}^{t} = \sigma(\mathbf{W}_{\text{out}}\mathbf{h}_{k}^{t+1} + \mathbf{b}_{k}) ykt=σ(Wouthkt+1+bk)

  • σ\sigmaσ:Sigmoid函数,将输出映射为概率(0~1)。
  • Wout\mathbf{W}_{\text{out}}Wout:共享权重矩阵,所有知识点共用。
  • 输出:每个知识点kkk在下一时刻的正确概率。

2.3 隐式图结构的实现

  • 统计方法
    • 密集图(Dense):所有知识点互相连接(边权重均匀)。
    • 转移图(Transition):根据知识点间的答题顺序统计转移概率。
    • DKT图:基于DKT模型的预测概率生成边权重。
  • 学习方法
    • PAM:直接优化邻接矩阵A\mathbf{A}A
    • MHA:用多头注意力动态计算边权重。
    • VAE:用变分自编码器学习稀疏的边类型分布。

3. 实验结果

3.1 性能对比(AUC分数)

方法ASSISTmentsKDDCup
DKT (基线)0.7090.751
GKT (Transition)0.7230.769
GKT (VAE)0.7220.769
  • 结论:GKT显著优于传统方法,且学习方法(VAE/MHA)与统计方法(Transition)效果接近。

3.2 可解释性分析

  • GKT:仅更新与当前知识点相关的节点(如图中绿色/红色区域)。
  • DKT:无差别更新所有知识点,难以追踪具体依赖关系。

4. 未来方向

  1. 引入图约束:如限制边的方向性(因果依赖)。
  2. 结合全局特征:在GKT中加入类似DKT的全局隐藏状态。
  3. 多跳传播:允许信息跨多跳节点传播(如“解二次方程”依赖“移项”的间接关系)。

5. 总结

  • 贡献:首次将GNN引入知识追踪,提升预测性能与可解释性。
  • 意义:为个性化教育和课程设计提供更精准的工具。

论文隐式图结构实现详解

1. 统计方法(Statistics-based Approaches)

1.1 密集图(Dense Graph)

  • 定义:假设所有知识点之间全连接,边权重均匀分配。
  • 数学表达
    Ai,j={1∣V∣−1若 i≠j0若 i=j \mathbf{A}_{i,j} = \begin{cases} \frac{1}{|V|-1} & \text{若 } i \neq j \\ 0 & \text{若 } i = j \end{cases} Ai,j={V110 i=j i=j
  • 例子:假设共有3个知识点(A、B、C),则每个知识点连接到其他两个,权重为0.5(如A→B和A→C的权重均为0.5)。
  • 优缺点
    • 优点:简单,无需额外数据。
    • 缺点:无法区分知识点间的真实依赖关系,可能引入噪声。

1.2 转移图(Transition Graph)

  • 定义:根据学生答题顺序的转移频率计算边权重。
  • 数学表达
    Ai,j=ni,j∑kni,k(i≠j) \mathbf{A}_{i,j} = \frac{n_{i,j}}{\sum_{k} n_{i,k}} \quad (i \neq j) Ai,j=kni,kni,j(i=j)
    • (n_{i,j}):知识点i之后立即回答知识点j的次数。
  • 例子:若学生答题顺序为A→B→A→C,则:
    • (n_{A,B}=1), (n_{A,C}=1), 所以A→B和A→C的权重均为0.5。
  • 优缺点
    • 优点:反映实际答题顺序的统计规律。
    • 缺点:可能忽略长距离依赖(如A→C可能通过B间接影响)。

1.3 DKT图(DKT Graph)

  • 定义:基于预训练的DKT模型预测的条件概率生成边权重。
  • 步骤
    1. 用DKT模型预测学生答对知识点j的概率,假设其受知识点i的影响。
    2. 若知识点i的存在显著提高j的预测概率,则赋予边i→j较高权重。
  • 例子:若DKT预测“解二次方程(B)”的正确率在“解线性方程(A)”答对后显著提升,则A→B的边权重较高。
  • 优缺点
    • 优点:利用DKT的预测能力捕捉隐性依赖。
    • 缺点:依赖DKT模型的准确性,计算成本高。

2. 学习方法(Learning-based Approaches)

2.1 参数化邻接矩阵(Parametric Adjacency Matrix, PAM)

  • 定义:将邻接矩阵(\mathbf{A})作为可学习参数直接优化。
  • 约束:通常限制(\mathbf{A})为非负且稀疏(如使用L1正则化)。
  • 例子:假设共有3个知识点,初始(\mathbf{A})为全连接,模型通过训练自动学习A→B权重0.8,A→C权重0.1,其余接近0。
  • 优缺点
    • 优点:灵活,无需预定义规则。
    • 缺点:参数量大((N \times N)),可能过拟合。

2.2 多头注意力(Multi-Head Attention, MHA)

  • 定义:用注意力机制动态计算知识点间的边权重。
  • 数学表达
    fneighbor(hi′,hj′)=1K∑k=1Kαijkfk([hi′,hj′]) f_{\text{neighbor}}(\mathbf{h}'_i, \mathbf{h}'_j) = \frac{1}{K} \sum_{k=1}^K \alpha_{ij}^k f_k([\mathbf{h}'_i, \mathbf{h}'_j]) fneighbor(hi,hj)=K1k=1Kαijkfk([hi,hj])
    -αijk\alpha_{ij}^kαijk:第k个注意力头计算的i到j的权重。
  • 例子:假设注意力头1关注“先决关系”,头2关注“同步掌握关系”:
    • 对知识点A(解线性方程)和B(解二次方程),头1可能赋予A→B高权重(因B依赖A)。
    • 对知识点B和C(因式分解),头2可能赋予高权重(因需同时掌握)。
  • 优缺点
    • 优点:捕捉复杂多类型关系。
    • 缺点:计算复杂度高(需计算所有节点对)。

2.3 变分自编码器(Variational Autoencoder, VAE)

  • 定义:用VAE隐式学习稀疏的边类型分布。
  • 关键步骤
    1. 编码器:根据节点特征推断潜在边类型分布(q(z_{ij} | \mathbf{h}_i, \mathbf{h}_j))。
    2. 采样:用Gumbel-Softmax生成离散边类型(z_{ij})。
    3. 解码器:根据边类型计算信息传播权重。
  • 例子:模型可能学到:
    • 边类型1:强依赖(如A→B)。
    • 边类型2:弱关联(如B→C)。
    • 边类型3:无关联(权重接近0,自动剪枝)。
  • 优缺点
    • 优点:自动学习稀疏结构,避免全连接噪声。
    • 缺点:训练不稳定,需调参。

3. 方法对比与典型场景

方法适用场景举例说明
密集图知识点间关系均匀或未知初学阶段,无先验知识时使用。
转移图答题顺序反映依赖关系英语学习中“单词→语法→阅读”的顺序。
DKT图需利用历史预测模型增强关系已有DKT模型,希望进一步提升性能。
PAM小规模知识点,关系复杂且多样编程知识点(如循环→函数→类)。
MHA多类型关系需动态捕捉数学中“几何证明依赖代数计算”。
VAE需自动发现稀疏关键依赖识别化学中的核心反应路径。

4. 隐式图结构的意义

  • 解决“先验知识缺失”:无需人工标注依赖关系,降低标注成本。
  • 动态适应学生行为:例如,VAE可自动发现某些学生群体特有的学习路径。
  • 提升可解释性:学习到的图结构可直观展示知识点间的依赖(如医学课程中“解剖学→生理学→病理学”的层级关系)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值