大数据项目:Spark农产品价格预测分析可视化系统 机器学习 线性回归预测算法模型 Flask框架 大数据技术 毕业设计

博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅

点击查看作者主页,了解更多项目!

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅

2、最全计算机专业毕业设计选题大全(建议收藏)✅

1、项目介绍

技术栈:
python语言、Spark技术、FLASK框架、requests爬虫技术、Echarts可视化、HTML、机器学习、线性回归预测算法模型、惠农网数据
惠农网 https://www.cnhnb.com/

2、项目界面

(1)农产品可视化分析----各农产品数量折线图、农产品均价分析

在这里插入图片描述

(2)均价前5农产品分析、售卖前5农产品

在这里插入图片描述

(3)数据中心----农产品、价格、市场、日期

在这里插入图片描述

(4)农产品预测—机器学习
在这里插入图片描述

(5)价格预测折线图
在这里插入图片描述

(6)选择农产品进行预测
在这里插入图片描述

(7)后台数据管理

在这里插入图片描述

3、项目说明

1. 项目介绍

技术栈
  • 编程语言:Python
  • 大数据处理:Spark技术
  • 后端框架:Flask
  • 数据采集:requests爬虫技术
  • 数据可视化:Echarts
  • 前端开发:HTML
  • 数据分析与预测:机器学习(线性回归预测算法模型)
  • 数据来源:惠农网(https://www.cnhnb.com/
项目目标

本项目旨在通过爬取惠农网的农产品数据,结合机器学习算法,实现农产品价格的可视化分析和预测。系统通过数据采集、处理、分析和可视化,帮助用户了解农产品市场的动态,并预测未来价格趋势,为农产品买卖提供决策支持。

2. 项目功能模块

(1)农产品可视化分析
  • 功能描述:通过可视化图表展示农产品的数量和均价变化趋势。
  • 特点
    • 提供各农产品数量的折线图,展示数量随时间的变化。
    • 提供农产品均价分析,帮助用户了解价格波动。
    • 使用Echarts实现动态交互式图表,提升用户体验。
(2)均价前5农产品分析、售卖前5农产品
  • 功能描述:展示均价排名前5和销售量排名前5的农产品。
  • 特点
    • 通过数据分析筛选出均价和销售量最高的农产品。
    • 使用柱状图或饼图直观展示排名情况。
    • 提供市场热点信息,帮助用户快速了解热门农产品。
(3)数据中心
  • 功能描述:提供农产品数据的详细查询和管理功能。
  • 特点
    • 数据中心整合了农产品、价格、市场和日期等信息。
    • 支持按农产品名称、日期等条件筛选数据。
    • 提供数据导出功能,方便用户进行进一步分析。
(4)农产品预测(机器学习)
  • 功能描述:使用线性回归模型预测农产品未来价格。
  • 特点
    • 通过爬取的历史数据训练模型,预测未来几天的均价。
    • 提供两种预测模式:
      • yuce1(name):针对特定农产品进行预测。
      • yuce2():对所有农产品进行统一预测。
    • 预测结果以图表形式展示,方便用户查看。
(5)价格预测折线图
  • 功能描述:以折线图形式展示农产品价格的预测结果。
  • 特点
    • 基于线性回归模型的预测结果生成折线图。
    • 展示未来几天的价格趋势。
    • 提供历史价格对比,帮助用户评估预测的合理性。
(6)选择农产品进行预测
  • 功能描述:用户可以通过界面选择特定的农产品进行价格预测。
  • 特点
    • 提供下拉菜单,列出所有可预测的农产品。
    • 用户选择后,系统调用预测函数并展示结果。
    • 支持“全部产品”选项,进行综合预测。
(7)后台数据管理
  • 功能描述:提供数据的管理功能,包括数据的增删改查。
  • 特点
    • 支持管理员对农产品数据进行管理。
    • 提供数据导入和导出功能,方便数据备份和更新。
    • 支持用户权限管理,确保数据安全。

3. 项目说明

数据处理与模型训练
  • 数据采集:通过requests爬虫技术从惠农网爬取农产品数据。
  • 数据处理
    • 从数据库中查询日期和价格数据。
    • 计算每个日期的均价。
    • 使用pandas创建DataFrame,分离特征(日期)和标签(均价)。
  • 模型训练
    • 使用train_test_split划分训练集和测试集。
    • 使用LinearRegression模型进行训练和预测。
  • 预测未来价格
    • 基于最后一个已知日期的均价,预测未来几天的均价。
    • 在预测结果中添加随机性(在yuce1中),模拟市场波动。
Web路由处理
  • 定义了/yuce路由,支持GET和POST请求:
    • GET方法:返回所有产品名称的列表,并渲染yuce.html模板。
    • POST方法:根据表单提交的产品名称,调用预测函数(yuce1yuce2),获取预测结果,并将结果显示在yuce.html模板中。
预测结果展示
  • 预测结果以字典列表的形式返回,并通过Echarts在Web页面上展示。
  • 提供动态交互功能,用户可以切换不同的农产品或时间范围,查看预测结果。

总结

本项目通过整合数据采集、处理、分析和可视化技术,构建了一个完整的农产品价格分析与预测系统。系统不仅提供了丰富的可视化功能,还通过机器学习模型为用户提供价格预测服务,帮助用户更好地把握市场动态。虽然项目在数据安全性和用户体验方面仍有提升空间,但已经具备了强大的功能,能够为农产品买卖提供有力支持。

4、核心代码


import random

from flask import Flask, request, render_template,jsonify,abort,session,redirect, url_for
import os
import models
from models import app
import time
from sqlalchemy import or_,and_
import pandas
import datetime
from flask_security import Security, SQLAlchemySessionUserDatastore, \
    UserMixin, RoleMixin, login_required, auth_token_required, http_auth_required,current_user

user_datastore = SQLAlchemySessionUserDatastore(models.db.session, models.User, models.Role)
security = Security(app, user_datastore)


@app.route('/', methods=['GET', 'POST'])
@app.route('/index', methods=['GET', 'POST'])
def index():#主页
    uuid = current_user.is_anonymous
    if uuid:
        return redirect(url_for('logins'))
    if request.method == 'GET':
        results = models.XinXi.query.all()
        return render_template('index.html',**locals())


from collections import OrderedDict
import pandas as pd
from sqlalchemy import or_,and_
import datetime
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import numpy
import traceback
def yuce1(name):
    try:
        dates = models.XinXi.query.filter(models.XinXi.产品 == name).all()
        date_day = list(set([i.日期 for i in dates]))
        date_day.sort()

        liuliang = []
        for i in date_day:
            record_list = models.XinXi.query.filter(and_(models.XinXi.日期 == i,models.XinXi.产品 == name)).all()
            num = 0
            count = 0
            for reco in record_list:
                num += reco.价格
                count += 1
            liuliang.append(round(num / count ,2))

        date_day = [str(i).replace('-', '') for i in date_day]
        # 数据集
        examDict = {
            '日期': date_day,
            '均价': liuliang
        }

        print(examDict)

        examOrderedDict = OrderedDict(examDict)
        examDf = pd.DataFrame(examOrderedDict)
        examDf.head()

        # exam_x 即为feature
        exam_x = examDf.loc[:, '日期']
        # exam_y 即为label
        exam_y = examDf.loc[:, '均价']

        x_train, x_test, y_train, y_test = train_test_split(exam_x, exam_y, train_size=0.8)

        x_train = x_train.values.reshape(-1, 1)
        x_test = x_test.values.reshape(-1, 1)

        model = LinearRegression()
        model.fit(x_train, y_train)

        LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

        rDf = examDf.corr()
        model.score(x_test, y_test)

        data1 = datetime.datetime.strptime(str(date_day[-3]), '%Y%m%d')
        li1 = []
        for i in range(10):
            data1 = data1 + datetime.timedelta(1)
            li1.append([int(data1.strftime('%Y%m%d'))])

        li2 = numpy.array(li1)

        y_train_pred = model.predict(li2)

        li2 = []
        for i in range(len(li1)):
            dicts = {}
            dicts['riqi'] = li1[i][0]
            dicts['junjia'] = round(round(abs(y_train_pred[i]),2) + round(random.random(),1),2)
            li2.append(dicts)
        return li2[2:]
    except:
        print(traceback.format_exc())
        return []

def yuce2():
    dates = models.XinXi.query.all()
    date_day = list(set([i.日期 for i in dates]))
    date_day.sort()

    liuliang = []
    for i in date_day:
        record_list = models.XinXi.query.filter(models.XinXi.日期 == i).all()
        num = 0
        count = 0
        for reco in record_list:
            num += reco.价格
            count += 1
        liuliang.append(round(num / count, 2))

    date_day = [str(i).replace('-', '') for i in date_day]
    # 数据集
    examDict = {
        '日期': date_day,
        '均价': liuliang
    }

    print(examDict)

    examOrderedDict = OrderedDict(examDict)
    examDf = pd.DataFrame(examOrderedDict)
    examDf.head()

    # exam_x 即为feature
    exam_x = examDf.loc[:, '日期']
    # exam_y 即为label
    exam_y = examDf.loc[:, '均价']

    x_train, x_test, y_train, y_test = train_test_split(exam_x, exam_y, train_size=0.8)

    x_train = x_train.values.reshape(-1, 1)
    x_test = x_test.values.reshape(-1, 1)

    model = LinearRegression()
    model.fit(x_train, y_train)

    LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

    rDf = examDf.corr()
    model.score(x_test, y_test)

    data1 = datetime.datetime.strptime(str(date_day[-1]), '%Y%m%d')
    li1 = []
    for i in range(10):
        data1 = data1 + datetime.timedelta(1)
        li1.append([int(data1.strftime('%Y%m%d'))])

    li2 = numpy.array(li1)

    y_train_pred = model.predict(li2)

    li2 = []
    for i in range(len(li1)):
        dicts = {}
        dicts['riqi'] = li1[i][0]
        dicts['junjia'] = round(abs(y_train_pred[i]),2)
        li2.append(dicts)
    print(li2)
    return li2[2:]

@app.route('/yuce', methods=['GET', 'POST'])
def yuce():
    if request.method == 'GET':
        result = list(set([i.产品 for i in models.XinXi.query.all()]))
        return render_template('yuce.html',**locals())
    elif request.method == 'POST':
        result = list(set([i.产品 for i in models.XinXi.query.all()]))
        name = request.form.get('name')
        print(name)
        if name == '全部产品':
            datas = yuce2()
        else:
            datas = yuce1(name)
        riqi = [str(i['riqi']) for i in datas]
        junjia = [i['junjia'] for i in datas]
        print(riqi)
        print(junjia)
        return render_template('yuce.html',**locals())

5、项目获取

biyesheji0005  或  biyesheji0001   (绿色聊天软件)

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅

感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值