博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅
1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅
1、项目介绍
技术栈:
python语言、Spark技术、FLASK框架、requests爬虫技术、Echarts可视化、HTML、机器学习、线性回归预测算法模型、惠农网数据
惠农网 https://www.cnhnb.com/
2、项目界面
(1)农产品可视化分析----各农产品数量折线图、农产品均价分析
(2)均价前5农产品分析、售卖前5农产品
(3)数据中心----农产品、价格、市场、日期
(4)农产品预测—机器学习
(5)价格预测折线图
(6)选择农产品进行预测
(7)后台数据管理
3、项目说明
1. 项目介绍
技术栈
- 编程语言:Python
- 大数据处理:Spark技术
- 后端框架:Flask
- 数据采集:requests爬虫技术
- 数据可视化:Echarts
- 前端开发:HTML
- 数据分析与预测:机器学习(线性回归预测算法模型)
- 数据来源:惠农网(https://www.cnhnb.com/)
项目目标
本项目旨在通过爬取惠农网的农产品数据,结合机器学习算法,实现农产品价格的可视化分析和预测。系统通过数据采集、处理、分析和可视化,帮助用户了解农产品市场的动态,并预测未来价格趋势,为农产品买卖提供决策支持。
2. 项目功能模块
(1)农产品可视化分析
- 功能描述:通过可视化图表展示农产品的数量和均价变化趋势。
- 特点:
- 提供各农产品数量的折线图,展示数量随时间的变化。
- 提供农产品均价分析,帮助用户了解价格波动。
- 使用Echarts实现动态交互式图表,提升用户体验。
(2)均价前5农产品分析、售卖前5农产品
- 功能描述:展示均价排名前5和销售量排名前5的农产品。
- 特点:
- 通过数据分析筛选出均价和销售量最高的农产品。
- 使用柱状图或饼图直观展示排名情况。
- 提供市场热点信息,帮助用户快速了解热门农产品。
(3)数据中心
- 功能描述:提供农产品数据的详细查询和管理功能。
- 特点:
- 数据中心整合了农产品、价格、市场和日期等信息。
- 支持按农产品名称、日期等条件筛选数据。
- 提供数据导出功能,方便用户进行进一步分析。
(4)农产品预测(机器学习)
- 功能描述:使用线性回归模型预测农产品未来价格。
- 特点:
- 通过爬取的历史数据训练模型,预测未来几天的均价。
- 提供两种预测模式:
- yuce1(name):针对特定农产品进行预测。
- yuce2():对所有农产品进行统一预测。
- 预测结果以图表形式展示,方便用户查看。
(5)价格预测折线图
- 功能描述:以折线图形式展示农产品价格的预测结果。
- 特点:
- 基于线性回归模型的预测结果生成折线图。
- 展示未来几天的价格趋势。
- 提供历史价格对比,帮助用户评估预测的合理性。
(6)选择农产品进行预测
- 功能描述:用户可以通过界面选择特定的农产品进行价格预测。
- 特点:
- 提供下拉菜单,列出所有可预测的农产品。
- 用户选择后,系统调用预测函数并展示结果。
- 支持“全部产品”选项,进行综合预测。
(7)后台数据管理
- 功能描述:提供数据的管理功能,包括数据的增删改查。
- 特点:
- 支持管理员对农产品数据进行管理。
- 提供数据导入和导出功能,方便数据备份和更新。
- 支持用户权限管理,确保数据安全。
3. 项目说明
数据处理与模型训练
- 数据采集:通过requests爬虫技术从惠农网爬取农产品数据。
- 数据处理:
- 从数据库中查询日期和价格数据。
- 计算每个日期的均价。
- 使用pandas创建DataFrame,分离特征(日期)和标签(均价)。
- 模型训练:
- 使用
train_test_split
划分训练集和测试集。 - 使用
LinearRegression
模型进行训练和预测。
- 使用
- 预测未来价格:
- 基于最后一个已知日期的均价,预测未来几天的均价。
- 在预测结果中添加随机性(在
yuce1
中),模拟市场波动。
Web路由处理
- 定义了
/yuce
路由,支持GET和POST请求:- GET方法:返回所有产品名称的列表,并渲染
yuce.html
模板。 - POST方法:根据表单提交的产品名称,调用预测函数(
yuce1
或yuce2
),获取预测结果,并将结果显示在yuce.html
模板中。
- GET方法:返回所有产品名称的列表,并渲染
预测结果展示
- 预测结果以字典列表的形式返回,并通过Echarts在Web页面上展示。
- 提供动态交互功能,用户可以切换不同的农产品或时间范围,查看预测结果。
总结
本项目通过整合数据采集、处理、分析和可视化技术,构建了一个完整的农产品价格分析与预测系统。系统不仅提供了丰富的可视化功能,还通过机器学习模型为用户提供价格预测服务,帮助用户更好地把握市场动态。虽然项目在数据安全性和用户体验方面仍有提升空间,但已经具备了强大的功能,能够为农产品买卖提供有力支持。
4、核心代码
import random
from flask import Flask, request, render_template,jsonify,abort,session,redirect, url_for
import os
import models
from models import app
import time
from sqlalchemy import or_,and_
import pandas
import datetime
from flask_security import Security, SQLAlchemySessionUserDatastore, \
UserMixin, RoleMixin, login_required, auth_token_required, http_auth_required,current_user
user_datastore = SQLAlchemySessionUserDatastore(models.db.session, models.User, models.Role)
security = Security(app, user_datastore)
@app.route('/', methods=['GET', 'POST'])
@app.route('/index', methods=['GET', 'POST'])
def index():#主页
uuid = current_user.is_anonymous
if uuid:
return redirect(url_for('logins'))
if request.method == 'GET':
results = models.XinXi.query.all()
return render_template('index.html',**locals())
from collections import OrderedDict
import pandas as pd
from sqlalchemy import or_,and_
import datetime
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import numpy
import traceback
def yuce1(name):
try:
dates = models.XinXi.query.filter(models.XinXi.产品 == name).all()
date_day = list(set([i.日期 for i in dates]))
date_day.sort()
liuliang = []
for i in date_day:
record_list = models.XinXi.query.filter(and_(models.XinXi.日期 == i,models.XinXi.产品 == name)).all()
num = 0
count = 0
for reco in record_list:
num += reco.价格
count += 1
liuliang.append(round(num / count ,2))
date_day = [str(i).replace('-', '') for i in date_day]
# 数据集
examDict = {
'日期': date_day,
'均价': liuliang
}
print(examDict)
examOrderedDict = OrderedDict(examDict)
examDf = pd.DataFrame(examOrderedDict)
examDf.head()
# exam_x 即为feature
exam_x = examDf.loc[:, '日期']
# exam_y 即为label
exam_y = examDf.loc[:, '均价']
x_train, x_test, y_train, y_test = train_test_split(exam_x, exam_y, train_size=0.8)
x_train = x_train.values.reshape(-1, 1)
x_test = x_test.values.reshape(-1, 1)
model = LinearRegression()
model.fit(x_train, y_train)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
rDf = examDf.corr()
model.score(x_test, y_test)
data1 = datetime.datetime.strptime(str(date_day[-3]), '%Y%m%d')
li1 = []
for i in range(10):
data1 = data1 + datetime.timedelta(1)
li1.append([int(data1.strftime('%Y%m%d'))])
li2 = numpy.array(li1)
y_train_pred = model.predict(li2)
li2 = []
for i in range(len(li1)):
dicts = {}
dicts['riqi'] = li1[i][0]
dicts['junjia'] = round(round(abs(y_train_pred[i]),2) + round(random.random(),1),2)
li2.append(dicts)
return li2[2:]
except:
print(traceback.format_exc())
return []
def yuce2():
dates = models.XinXi.query.all()
date_day = list(set([i.日期 for i in dates]))
date_day.sort()
liuliang = []
for i in date_day:
record_list = models.XinXi.query.filter(models.XinXi.日期 == i).all()
num = 0
count = 0
for reco in record_list:
num += reco.价格
count += 1
liuliang.append(round(num / count, 2))
date_day = [str(i).replace('-', '') for i in date_day]
# 数据集
examDict = {
'日期': date_day,
'均价': liuliang
}
print(examDict)
examOrderedDict = OrderedDict(examDict)
examDf = pd.DataFrame(examOrderedDict)
examDf.head()
# exam_x 即为feature
exam_x = examDf.loc[:, '日期']
# exam_y 即为label
exam_y = examDf.loc[:, '均价']
x_train, x_test, y_train, y_test = train_test_split(exam_x, exam_y, train_size=0.8)
x_train = x_train.values.reshape(-1, 1)
x_test = x_test.values.reshape(-1, 1)
model = LinearRegression()
model.fit(x_train, y_train)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
rDf = examDf.corr()
model.score(x_test, y_test)
data1 = datetime.datetime.strptime(str(date_day[-1]), '%Y%m%d')
li1 = []
for i in range(10):
data1 = data1 + datetime.timedelta(1)
li1.append([int(data1.strftime('%Y%m%d'))])
li2 = numpy.array(li1)
y_train_pred = model.predict(li2)
li2 = []
for i in range(len(li1)):
dicts = {}
dicts['riqi'] = li1[i][0]
dicts['junjia'] = round(abs(y_train_pred[i]),2)
li2.append(dicts)
print(li2)
return li2[2:]
@app.route('/yuce', methods=['GET', 'POST'])
def yuce():
if request.method == 'GET':
result = list(set([i.产品 for i in models.XinXi.query.all()]))
return render_template('yuce.html',**locals())
elif request.method == 'POST':
result = list(set([i.产品 for i in models.XinXi.query.all()]))
name = request.form.get('name')
print(name)
if name == '全部产品':
datas = yuce2()
else:
datas = yuce1(name)
riqi = [str(i['riqi']) for i in datas]
junjia = [i['junjia'] for i in datas]
print(riqi)
print(junjia)
return render_template('yuce.html',**locals())
5、项目获取
biyesheji0005 或 biyesheji0001 (绿色聊天软件)
🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅
感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻