YOLOX的数据集准备与训练

本文详细介绍了如何准备YOLOX的VOC数据集,包括数据集的下载和解压,训练集和测试集的划分。同时,讲解了如何修改YOLOX的配置文件,以适应自定义数据集的训练。训练过程包括命令的执行、训练过程的可视化以及训练结果的位置。此外,还涵盖了测试网络模型、训练YOLOX-Nano模型以及如何在模型中支持中文标签的步骤。
摘要由CSDN通过智能技术生成

1 准备数据集

1.1 准备VOCdevkit_bm.zip (下载到YOLOX/datasets目录下并解压)

VOCdevkit使用PASCAL VOC数据集的目录结构;
文件夹层次为:“VOCdevkit \ VOC2007”(注意:YOLOX为YOLOX的根目录,与文件夹路径:YOLOX\yolox区分开);
VOC2007下面建立三个文件夹:Annotations,JPEGImages和ImageSets/Main(JPEGImages放所有的训练集图片;Annotations放所有的xml标记文件;mageSets/Main下存放训练集、验证集、测试集划分文件(目前为空))

1.2 准备testfiles.zip (下载到YOLOX目录下并解压)

这是用于存放测试图片和视频的文件夹,有少量的JPG图片和MP4视频

1.3 split_voc.py (下载到YOLOX目录下)

这是用于划分训练集和测试集的python脚本,执行后在

“YOLOX\datasets\VOCdevkit\VOC2007\ImageSets\Main”目录中生成四个TXT文件

train.txt给出了训练集图片文件的列表(不含文件名后缀)

val.txt给出了验证集图片文件的列表

test.txt给出了测试集图片文件的列表

trainval.txt 给出了训练集和验证集图片文件的列表
# split_voc.py
# 数据集划分
import os
import random
 
root_dir='./datasets/VOCdevkit/VOC2007/'
 
## 0.7train 0.1val 0.2test
trainval_percent = 0.8 #0.8为训练集和验证集的总占比,(1-trainval_percent )为测试集比例
train_percent = 0.7 #0.7为 训练集/验证集 的比例
xmlfilepath = root_dir+'Annotations'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值