1 准备数据集
1.1 准备VOCdevkit_bm.zip (下载到YOLOX/datasets目录下并解压)
VOCdevkit使用PASCAL VOC数据集的目录结构;
文件夹层次为:“VOCdevkit \ VOC2007”(注意:YOLOX为YOLOX的根目录,与文件夹路径:YOLOX\yolox区分开);
VOC2007下面建立三个文件夹:Annotations,JPEGImages和ImageSets/Main(JPEGImages放所有的训练集图片;Annotations放所有的xml标记文件;mageSets/Main下存放训练集、验证集、测试集划分文件(目前为空))
1.2 准备testfiles.zip (下载到YOLOX目录下并解压)
这是用于存放测试图片和视频的文件夹,有少量的JPG图片和MP4视频
1.3 split_voc.py (下载到YOLOX目录下)
这是用于划分训练集和测试集的python脚本,执行后在
“YOLOX\datasets\VOCdevkit\VOC2007\ImageSets\Main”目录中生成四个TXT文件
train.txt给出了训练集图片文件的列表(不含文件名后缀)
val.txt给出了验证集图片文件的列表
test.txt给出了测试集图片文件的列表
trainval.txt
给出了训练集和验证集图片文件的列表
# split_voc.py
# 数据集划分
import os
import random
root_dir='./datasets/VOCdevkit/VOC2007/'
## 0.7train 0.1val 0.2test
trainval_percent = 0.8 #0.8为训练集和验证集的总占比,(1-trainval_percent )为测试集比例
train_percent = 0.7 #0.7为 训练集/验证集 的比例
xmlfilepath = root_dir+'Annotations'