复盘自用:使用yolox训练自己的数据集(仅参考)

本文详细指导如何在Python中安装YOLOX进行物体检测,包括解决PyTorch版本与CUDA不兼容问题,构建VOC格式数据集,修改配置文件以适应特定类别,以及在训练过程中遇到的问题和解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一  安装环境

超详细!手把手教你使用YOLOX进行物体检测(附数据集) - 知乎 (zhihu.com)

参考这篇文章,装好先demo,demo成功说明没有问题。最好使用gpu推理,因为后期训练也是使用gpu。这样才能测试环境。

tips:我遇到的问题:pytorch capability sm_86 is not compatible with the current PyTorch installation。

torch版本与cuda版本不兼容。此处显卡为3090,我装了1.7.1和cuda11.0解决了问题。

直接执行这条命令解决了这个问题

我参考了这个文章解决的:解决pytorch capability sm_86 is not compatible with the current PyTorch installation 问题_cuda capability sm_86 is not compatible with the c-CSDN博客

pip3 install torch==1.7.1+cu110 torchvision==0.8.2+cu110 -f https://download.pytorch.org/whl/cu110/torch_stable.html

二 构建voc格式数据集

在根目录下创建VOCdevkit/VOC2007

其中annotation存放xml标签文件,JPEGimage放原始图片。ImageSets/Main下的两个文件可以根据代码建立,创建代码参考这篇文章。

YOLOX训练自己的数据集(头铁出来的超详细教程)-CSDN博客

三 修改配置文件

参考YOLOX训练自己的数据集(超详细)-CSDN博客

YOLOX训练自己的数据集(头铁出来的超详细教程)-CSDN博客

3.1类别定义

将里面的类别改为自己的类别名字

3.2 类别数量

将数字改为自己的类别数量

3.3数据文件路径

修改 yolox/data/dataloading.py改为自己的yolox路径

终于可以训练了!

 python tools/train.py -f exps/example/yolox_voc/yolox_voc_s.py -d 1 -b 4 --fp16  -c yolox_s.pth

更新:另一个训练方式

python tools/train.py -f exps/example/yolox_voc/yolox_voc_s.py -d 1 -b 16 --fp16 -o -c ./yolox_s.pth

3.4自己遇到的问题

3.4.1 路径导航不对

原因:前面在yolox执行了这段代码如下图,装了一个yolox的包,执行项目路径错误导航到这个包。解决办法:pip uninstall yolox,卸载掉

python setup.py install
使用YOLOX训练自己的数据集,你可以按照以下步骤进行操作: 1. 下载YOLOX源码,并配置环境。你可以在文章目录中找到有关如何下载YOLOX源码和配置环境的详细说明。 2. 修改源码以添加权重文件。在YOLOX-main\exps\example\yolox_voc\yolox_voc_s.py文件中,你可以修改文件路径,添加你自己的权重文件。 3. 建立VOCdevkit文件夹并添加数据集。将你的数据集文件夹放置在YOLOX-main\YOLOX\data\datasets目录下,并确保你的数据集文件夹的结构与VOCdevkit类似。 4. 划分训练集和测试集。在你的数据集文件夹中,可以根据你的需求创建train.txt和val.txt文件来划分训练集和测试集。 5. 修改类别为自己训练样本的classes。在YOLOX-main\yolox\data\datasets\voc_classes.py文件中,将classes列表修改为你自己数据集的类别。 6. 开始训练使用命令行工具进入YOLOX-main目录,并运行以下命令开始训练:python tools/train.py -f exps/example/yolox_voc/yolox_voc_s.py --name yolox_voc_s 7. 训练过程中可能会出现一些错误,例如ModuleNotFoundError、FileNotFoundError等。根据具体的错误信息进行调试,并解决相关问题。 8. 训练完成后,你可以进行测试。使用以下命令运行测试:python tools/eval.py -f exps/example/yolox_voc/yolox_voc_s.py --name yolox_voc_s 希望以上步骤可以帮助你成功使用YOLOX训练自己的数据集。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [WIN10使用YOLOX训练自己的数据集(图解超详细)](https://blog.csdn.net/qq_44824148/article/details/122445760)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值