石墨烯能带结构(考虑三近邻),两种方法对比 (1)构造哈密顿 (2)matlab 后处理wannier90hr.dat (晶体规范)

                                      单层石墨烯能带图。方法一用+表示 ,方法2红色实线表示

(1)根据原胞构建哈密顿 

%%Nie-Wei Wang,2024-1-8 (分解版,有基础)
clear all
%%%%%%%%晶格矢量 正格矢量
a1=[2.4682263781246880    0.0000000000000000    0.0000000000000000];           
a2=[-1.2341131890623440    2.1375467457960933    0.0000000000000000];            
a3=[0.0000000000000000    0.0000000000000000   10.0000000000000000];
% C1=[0.0000018561517373 -0.0000018561604471  0.5000000000000000];
% C2=[0.6666682727452335  0.3333317562640553  0.5000000000000000];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
V=dot(a1,cross(a2,a3));%  %%%晶胞体积

b1=2*pi*cross(a2,a3)/V; %%%%倒格矢量
b2=2*pi*cross(a3,a1)/V;
b3=2*pi*cross(a1,a2)/V;

a1=a1(1:2);                     %晶格矢量a1 二维
a2=a2(1:2);                     %晶格矢量a2
 
b1=b1(1:2);                     %%%倒空间晶格矢量b1,二维
b2=b2(1:2);                     %%%倒格矢b2
 
gamma=[0 0];                    %%%高对称点gamma 
M=1/2*b1;                       %%%高对称点M    
K=1/3*b1+1/3*b2;                %%%高对称点K   


kn=20;     %两个高对称点之间分成有kn个点
% Gamma-M段  每个高对称点都有两个 150和151都是M点
kx(1:kn)=linspace(gamma(1),M(1),kn);
ky(1:kn)=linspace(gamma(2),M(2),kn);
% M-K段
kx(kn+1:2*kn)=linspace(M(1),K(1),kn);
ky(kn+1:2*kn)=linspace(M(2),K(2),kn);
% K-Gamma段
kx(2*kn+1:3*kn)=linspace(K(1),0,kn);
ky(2*kn+1:3*kn)=linspace(K(2),0,kn);
k=zeros(3*kn,2);
k(:,1)=kx;            
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值