单层石墨烯能带图。方法一用+表示 ,方法2红色实线表示
(1)根据原胞构建哈密顿
%%Nie-Wei Wang,2024-1-8 (分解版,有基础)
clear all
%%%%%%%%晶格矢量 正格矢量
a1=[2.4682263781246880 0.0000000000000000 0.0000000000000000];
a2=[-1.2341131890623440 2.1375467457960933 0.0000000000000000];
a3=[0.0000000000000000 0.0000000000000000 10.0000000000000000];
% C1=[0.0000018561517373 -0.0000018561604471 0.5000000000000000];
% C2=[0.6666682727452335 0.3333317562640553 0.5000000000000000];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
V=dot(a1,cross(a2,a3));% %%%晶胞体积
b1=2*pi*cross(a2,a3)/V; %%%%倒格矢量
b2=2*pi*cross(a3,a1)/V;
b3=2*pi*cross(a1,a2)/V;
a1=a1(1:2); %晶格矢量a1 二维
a2=a2(1:2); %晶格矢量a2
b1=b1(1:2); %%%倒空间晶格矢量b1,二维
b2=b2(1:2); %%%倒格矢b2
gamma=[0 0]; %%%高对称点gamma
M=1/2*b1; %%%高对称点M
K=1/3*b1+1/3*b2; %%%高对称点K
kn=20; %两个高对称点之间分成有kn个点
% Gamma-M段 每个高对称点都有两个 150和151都是M点
kx(1:kn)=linspace(gamma(1),M(1),kn);
ky(1:kn)=linspace(gamma(2),M(2),kn);
% M-K段
kx(kn+1:2*kn)=linspace(M(1),K(1),kn);
ky(kn+1:2*kn)=linspace(M(2),K(2),kn);
% K-Gamma段
kx(2*kn+1:3*kn)=linspace(K(1),0,kn);
ky(2*kn+1:3*kn)=linspace(K(2),0,kn);
k=zeros(3*kn,2);
k(:,1)=kx;