计算石墨烯能带_石墨烯的能带结构

本文介绍了在紧束缚近似和二次量子化的框架下,如何求解石墨烯的能带结构。首先解释了二次量子化的基本概念,包括产生湮灭算符和对易关系。接着,讨论了能带理论,阐述了单电子在周期势场中的能级。然后,详细说明了紧束缚近似在晶体能带计算中的应用,特别是针对石墨烯这种二维蜂窝材料。最终,通过计算得到石墨烯的能带能量,并探讨了狄拉克锥的存在及其意义。
摘要由CSDN通过智能技术生成
本文使用 Zhihu On VSCode 创作并发布

想要在紧束缚近似下用二次量子化的语言求解石墨烯的能带。在正式求解前,首先为只有四大力学基础的同学(感觉前言给自己挖了一个大坑……)简单介绍一下二次量子化、能带和紧束缚近似的概念。

(话是这么说,但全文主要好像都在介绍这些内容,具体能带的求解反而比较容易……)

二次量子化

关于二次量子化,知乎中以及各种教科书中都有较为精彩的叙述,如二次量子化(Second Quantization) - 正樹的文章 - 知乎,此处给出一个较为简单的介绍。

考虑一个全同玻色子系统,假设系统中单个玻色子可以定义一组正交完备的态

,只学过基础的量子力学的同学们可能会想用这些态的直积和线性组合来描述系统。即若有两个态
,系统中有两个粒子,则系统的态可以由

及这些态的线性组合来描述。

但是这种方法对系统的描述在粒子数较多时会比较繁琐。设系统有

个粒子,有m个彼此正交的态
,每个态的占据数分别为
,考虑到玻色子须满足交换对称性,此时系统的态为

其中

为排列算符,作用效果是重排量子态的顺序,如将
重排为
。式中的求和是对
个粒子的所有可能的排列(全排列)的求和。

在发现了直接的量子态描述非常繁琐之外,我们还发现了一件事:由于交换对称性的要求,只需要知道系统中每个态的占据数,系统所处的态就几乎是唯一确定的(除了可以附加一个整体相位

)。因此,我们可以直接用占据数来描述系统,即,将上述态表示为

只是修改了态的记号并不能使我们更方便地处理问题,我们还需要知道在新的记号下的态被算符作用后的行为,尤其是我们想方便地表示哈密顿量算符。为此,我们首先引入产生湮灭算符。

定义产生算符

与湮灭算符

容易看出产生算符

与湮灭算符
互为厄米共轭,证明了我们的记号是合理的(笑)。

产生湮灭算符的含义可以理解为在系统中产生或湮灭一个

态的粒子,并乘以对应系数。

可能会有同学疑惑为何定义中有

等系数,看起来并不是很自然。这样的定义使得粒子数算符
(给出处于
态的粒子数)可以简单地表示为
,可以为后面用产生湮灭算符表示各种算符带来方便。同时,当
时,这样的湮灭算符给出了一个0的系数,避免了
的态出现造成的麻烦。

此处的产生湮灭算符是对于玻色子系统定义的,费米子系统略有不同,主要是系数会出现一些正负号的不同。

对于玻色子系统的产生湮灭算符,有如下一些常用的性质:

  • 对易关系
    相同态的产生湮灭算符的对易关系

    不同的(还要求彼此正交的)态之间的产生湮灭算符对易。
    对于费米子系统,产生湮灭算符有类似的反对易关系。
  • 真空态
    称态
    为真空态,所有的态都可由真空态加产生算符导出,即
  • 表象变换
    考虑两组态
    ,同一组态内每个态彼此正交,两组态的湮灭算符分别为
    。由于所有态都可以从真空态加产生算符得到,可以猜测一组态的每一个产生算符都可以表示为另一组态产生算符的函数。为了保证总粒子数的一致,一组态的每一个产生算符应该是另一组态产生算符的线性组合。(显然,这个猜测是可以得到证明的,不过我们在此略去,有兴趣的读者可以自己证明)借助真空态,我们可以得到

    故有

之后我们就可以开始尝试用产生湮灭算符表示其他算符了。

首先考虑能写为同一单体算符之和的算符,即

其中

仅作用在第
个粒子上(不是
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值