无人驾驶
文章平均质量分 78
THE@JOKER
一个无耻混蛋
展开
-
Rotated_IoU
介绍https://github.com/lilanxiao/Rotated_IoU该报告是用于2D / 3D对象检测的IoU损失的非官方实现。 它包含Pytorch函数,该函数使用GPU计算定向矩形的相交面积。注意CUDA扩展最近进行了修改,以涵盖一些极端情况。 请考虑更新代码并重新编译扩展。检查清单 pytorch函数查找定向矩形的交点 pytorch函数检查一个矩形的角是否位于另一个矩形中 CUDA扩展为两个矩形的相交多边形的逆时针排序顶点 Pytorch函数使用上述函数计算矩形.原创 2021-04-09 21:13:58 · 1012 阅读 · 0 评论 -
IoU Loss for 2D/3D Object Detection 学习笔记
Brief最近在实验中发现,3D检测的精度和cls_loss的关系非常的大,一般来说,按照SECOND的代码训练下降到cls_loss大致为0.8左右时,会有一个不错的效果,在验证集上可以达到0.88左右的精度(对car-easy)而言,但是当loss继续向下降的时候,反而得不到刚好的效果,改了一些网络结构,加了一些特征,发现改结构的效果并不如从特征或者其他方面着手容易,因此研究别人如何通过LOSS来提高论文精度的。Abstract在2D / 3D物体检测任务中,IoU 已被广泛用作评估度量以评估测试转载 2021-04-08 19:42:50 · 1739 阅读 · 1 评论 -
VoxelNet->SECOND->PointPillars
VoxelNet->SECOND->PointPillars相比于图像,激光点云数据是 3D 的,且有稀疏性,所以对点云的前期编码预处理尤其重要,目前大多数算法都是在鸟瞰图下进行点云物体检测,由此对点云的编码预处理主要有两大类方法:以一定的分辨率将点云体素化,每个垂直列中的体素集合被编码成一个固定长度,手工制作的特征,最终形成一个三维的伪图像,以此为代表的方法有 MV3D,AVOD,PIXOR,Complex YOLO;PointNet 无序点云处理方式,以此为代表的方法 Frustum原创 2021-04-02 18:49:34 · 2174 阅读 · 0 评论 -
VoxelNet: VFELayer 和 PointPillar: PFN_Layer
voxelnet是通过VFE获得每个voxel的特征,然后采用3DCNN获得全局特征pointpillar模型训练上,car单独训一个模型,ped和cyc单独训一个模型特征提取网络这个模块是把无序的点云转换成有序的结构化的pseudo image格式,也就是说,输入的是n x 4的一帧点云,输出的是[C, H, W]的特征图。这里可以对比voxelnet,输入的同样是n x 4, 输出的[C, D, H, W]。这是因为voxelnet在划分格子的时候,在z方向(高度方向)也划分了格子,这样划分.原创 2021-04-02 18:48:02 · 933 阅读 · 0 评论 -
KITTI 3D目标检测的评估指标
Car AP_R40@0.70, 0.50, 0.50:bbox AP:95.5675, 92.1874, 91.3088bev AP:95.6500, 94.7010, 93.99183d AP:95.6279, 94.5680, 93.6853aos AP:95.54, 91.98, 90.94Pedestrian AP@0.50, 0.50, 0.50:bbox AP:65.0374, 61.3875, 57.8241bev AP:60.1475, 54.9657, 51.17原创 2021-03-31 19:01:41 · 19153 阅读 · 12 评论 -
目标检测中bbox回归中class-agnostic和class-specific的区别
明显是网络预测的object 类别数目不同。class-specific 方式,很多地方也称作class-aware的检测,是早期Faster RCNN等众多算法采用的方式。它利用每一个RoI特征回归出所有类别的bbox坐标,最后根据classification 结果索引到对应类别的box输出。这种方式对于ms coco有80类前景的数据集来说,并不算效率高的做法。对于class-aware的检测器,如果向其提供图像,它将返回一组边界框,每个边界框都与内部物体(例如狗,猫,汽车)的类别相关联。 这意味着,原创 2021-03-24 16:22:38 · 1488 阅读 · 0 评论 -
PointPillars 学习笔记
https://www.cnblogs.com/sdu20112013/p/12455629.htmlhttps://blog.csdn.net/Yong_Qi2015/article/details/106110653https://blog.csdn.net/a_123456598/article/details/107486129原创 2021-03-23 16:50:44 · 1538 阅读 · 0 评论 -
PCDet: Open-MMLab 面向LiDAR点云表征的3D目标检测代码库
前言随着自动驾驶与机器人技术的不断发展,基于点云表征的3D目标检测领域在近年来取得了不断的发展。然而,层出不穷的点云数据集(KITTI、NuScene、Lyft、Waymo、PandaSet等)在数据格式与3D坐标系上往往定义各不相同,各式各样的点云感知算法(point-based、 voxel-based、one-stage/two-stage等)也形态各异,使得相关研究者难以在一个统一的框架内进行各种组合实验。为此,我们开源了一套基于PyTorch实现的点云3D目标检测代码库 - OpenPCDet转载 2021-03-11 11:32:17 · 1307 阅读 · 0 评论 -
PointPillars 学习笔记
PointPillars: FastEncodersforObjectDetectionfromPointClouds原创 2021-03-08 15:01:07 · 1558 阅读 · 1 评论 -
Kitti Viewer Web的使用
主要步骤1.在server/local(终端)运行python ./kittiviewer/backend.py main --port = xxxx。原main.py文件默认port=16666,故在second文件下打开终端,命令中xxxx改为16666即可2.再在second文件下打开另一个终端,运行cd ./kittiviewer/frontend && python -m http.server,以启动本地Web服务器。3.打开浏览器并输入你的前端URL(例如,默认是h原创 2021-02-23 14:50:51 · 1795 阅读 · 0 评论 -
代码阅读 :SECOND pytorch版本
代码量很大。。。框架second.pytorch -------- |---images |---second ----|---apex |---torchplus |---builder |---configs |---core原创 2021-04-02 19:02:01 · 881 阅读 · 1 评论 -
代码复现 :SECOND pytorch版本 ②
1.下载 KITTI 数据集并首先创建一些目录:…2.创建KITTI的相关信息:python create_data.py create_kitti_info_file --data_path=KITTI_DATASET_ROOT3.创建缩减点云(reduced point cloud):python create_data.py create_reduced_point_cloud --data_path=KITTI_DATASET_ROOT4.创建真值数据库(groundtruth-da原创 2021-03-03 21:50:25 · 1147 阅读 · 1 评论 -
代码复现 :SECOND pytorch版本 ①
源码: https://github.com/traveller59/second.pytorch仅支持python 3.6 +,pytorch 1.0.0+。 在Ubuntu 16.04 / 18.04 / Windows 10中进行了测试。我们只关注KITTI数据集。News2019-4-1:发布了SECOND V1.6.0 alpha:New DataAPI,NuScenes支持,PointPillars支持,fp16和multi-gpu支持。2019-3-21:SECOND V1.5.1原创 2021-03-03 21:50:01 · 1600 阅读 · 2 评论 -
SECOND Sparse Convolution Algorithm
稀疏卷积算法让我们首先考虑2D密集卷积算法。我们使用 Wu,v,l,m 来表示滤波元素,使用 Du,v,l 来表示图像元素,其中u和v是空间位置索引,l表示输入通道,m表示输出通道。给定提供的输出位置,函数P(x,y)生成需要计算的输入位置。因此,Yx,y,m 的卷积输出由下式给出:其中x和y是输出空间索引,而u-u0和v-v0代表内核偏移u和v坐标。 可以使用基于通用矩阵乘法(GEMM)的算法(也称为基于im2col的算法[30])来收集构造矩阵 D̃ P(x,y),l 所需的所有数据,然后执行GE原创 2021-03-04 21:29:57 · 688 阅读 · 0 评论 -
SECOND 学习笔记
《SECOND: Sparsely Embedded Convolutional Detection》 (单阶段,point-based)文章目录前言一、网络结构1. 体素特征提取器2. 稀疏卷积中间层3. RPN二、损失函数三、数据增强四、Network Details前言基于LiDAR或基于RGB-D的目标检测被用于从自动驾驶到机器人视觉的众多应用中。 在处理点云LiDAR数据时,基于Voxel的3D卷积网络已经使用了一段时间,体素方法能够在处理雷达点云数据时的保留更多的信息。 但是,仍然存原创 2021-04-02 14:47:10 · 1994 阅读 · 1 评论 -
MV3D-Net 学习笔记
[CVPR17]《Multi-View 3D Object Detection Network for Autonomous Driving》原创 2021-02-25 20:35:18 · 1061 阅读 · 0 评论 -
代码复现 : voxelnet_tensorflow版本
程序代码:https://github.com/qianguih/voxelnet程序运行环境运行系统:Ubuntu18.04使用语言:Python3.56硬件支持:GTX2080Ti + CUDA10.0 + CUDNN7.6.5 + TensorFlow-gpu1.15.4原创 2021-02-23 20:39:29 · 605 阅读 · 4 评论 -
VoxelNet 学习笔记
CVPR2018《VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection》文章目录前言一、主要思想和创新点二、整体网络框架1.Feature Learning Network2.Convolutional Middle Layers3.Region Proposal Network前言VoxelNet是苹果公司提出的一个只用点云来实现端到端的点云目标检测网络,和图像视觉中的深度学习方法一样,其不需要人为设计的目原创 2021-02-23 14:47:40 · 3047 阅读 · 1 评论