PyTorch
THE@JOKER
一个无耻混蛋
展开
-
pytorch 查看 电脑配置
pytorch查看深度学习配置原创 2022-11-12 22:45:30 · 1553 阅读 · 0 评论 -
Pytorch 迁移学习
迁移学习的概念实际中,基本没有人会从零开始(随机初始化)训练一个完整的卷积网络,因为相对于网络,很难得到一个足够大的数据集[网络很深, 需要足够大数据集]。通常的做法是在一个很大的数据集上进行预训练得到卷积网络ConvNet, 然后将这个ConvNet的参数作为目标任务的初始化参数或者固定这些参数。如果你认为深度学习非常的吃GPU,或者说非常的耗时间,训练一个模型要非常久,但是你如果了解了迁移学习那你的模型可能只需要几分钟,而且准确率不比你自己训练的模型准确率低,本节我们将会介绍两种方法来实现迁移学习。原创 2021-07-07 20:06:14 · 1088 阅读 · 2 评论 -
Pytorch | torch.nn.SyncBatchNorm
torch.nn.SyncBatchNorm(num_features,eps = 1e-05,动量= 0.1,仿射= True,track_running_stats = True,process_group = None)[源代码]如论文“Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.”中所述,对N维输入(具有附加通道维的[N-2] D输入的小批量)应用批量归一化原创 2021-03-16 21:44:31 · 12129 阅读 · 0 评论 -
PyTorch | torch.nn.functional.interpolate
torch.nn.functional.interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None)根据给定的size或scale_factor参数来对输入进行下/上采样使用的插值算法取决于参数mode的设置支持目前的temporal(1D, 如向量数据), spatial(2D, 如jpg、png等图像数据)和volumetric(3D, 如点云数据)类型的采样数据作为输入,输入数据的格式为原创 2021-06-19 20:28:38 · 603 阅读 · 0 评论 -
PtTorch | torch.square
torch.square(input,*,out = None)→张量返回带有输入元素平方的新张量。 参数 输入(张量)–输入张量。 关键字参数 out(张量,可选)–输出张量。例子:>>> a = torch.randn(4)>>> atensor([-2.0755, 1.0226, 0.0831, 0.4806])>>> torch.square(a)tensor([ 4.3077, 1.0457,原创 2021-04-11 21:59:01 · 7106 阅读 · 0 评论 -
PyTorch | 零填充张量
如果您只想用零填充张量(而不仅仅是在某处添加额外的零),则可以使用torch.nn.functional.pad:import torcht = torch.arange(8).reshape(1, 4, 2).float()x = torch.nn.functional.pad(t, (1, 1, 1, 1))# 左、右、上、下各填充‘’1‘’个0print(x)0 0 0 00 1 2 00 3 4 00 5 6 00 7 8 00 0 0 0 ...原创 2021-04-10 13:53:49 · 4104 阅读 · 0 评论 -
pytorch | 生成随机数
在使用PyTorch做实验时经常会用到生成随机数Tensor的方法,比如:torch.rand()torch.randn()torch.normal()torch.linespace()均匀分布torch.rand(*sizes, out=None) → Tensor返回一个张量,包含了从区间[0, 1)的均匀分布中抽取的一组随机数。张量的形状由参数sizes定义。参数:sizes (int...) - 整数序列,定义了输出张量的形状out (Tensor, optinal) - 结果张量原创 2021-04-10 09:24:00 · 588 阅读 · 0 评论 -
PyTorch | torch.cat
两个张量(tensor)拼接使用torch.cat((A,B),dim)时,除拼接维数dim数值可不同外其余维数数值需相同,方能对齐。C = torch.cat( (A,B),0 ) #按维数0拼接(竖着拼)C = torch.cat( (A,B),1 ) #按维数1拼接(横着拼)>>> import torch>>> A=torch.ones(2,3) #2x3的张量(矩阵) &原创 2021-04-04 21:05:47 · 114 阅读 · 0 评论 -
PyTorch | torch.sigmoid、torch.nn.Sigmoid
torch.sigmoid我们可以看到,这是一个方法,拥有Parametrs和Returns。torch.nn.Sigmoid可以看到官网文档在左上角标注着显眼的CLASS,同时根据Examples我们可以得出结论,torch.nn.Sigmoid在我们的神经网络中使用时,我们应该将其看作是网络的一层,而不是简单的函数使用。torch.nn.functional.sigmoid事实上,torch.nn.functional从这个包名就能看出来,这个包里的都是函数。同样的,按照官网的文档的内容,转载 2021-04-04 15:46:29 · 2460 阅读 · 0 评论 -
PyTorch | scatter()、scatter_()
scatter() 和 scatter_() 的作用是一样的,只不过 scatter() 不会直接修改原来的 Tensor,而 scatter_() 会PyTorch 中,一般函数加下划线代表直接在原来的 Tensor 上修改scatter(dim, index, src) 的参数有 3 个dim:沿着哪个维度进行索引index:用来 scatter 的元素索引src:用来 scatter 的源元素,可以是一个标量或一个张量这个 scatter 可以理解成放置元素或者修改元素简单说就是通原创 2021-04-04 15:34:24 · 164 阅读 · 0 评论 -
PyTorch | torch.nn.Module
torch.nn 是专门为神经网络设计的模块化接口,nn构建于autgrad之上,可以用来定义和运行神经网络。torch.nn.Module 是nn中重要的类,包含网络各层的定义,以及forward方法。这个类的内部有多达 48 个函数,这个类是 PyTorch 中所有 neural network module 的基类,自己创建的网络模型都是这个类的子类。大佬都写好了:pytorch教程之nn.Module类详解——使用Module类来自定义模型...原创 2021-04-05 18:20:38 · 164 阅读 · 0 评论 -
Pytorch | Autograd
https://blog.csdn.net/qq_35687547/article/details/101903719原创 2021-04-02 18:49:05 · 79 阅读 · 0 评论 -
Pytorch | Tensor
创建Tensor创建一个 5x3 的未初始化的 Tensor:x = torch.empty(5, 3)print(x)创建一个 5x3 的随机初始化的 Tensor:x = torch.rand(5, 3)print(x)创建一个 5x3 的long型全0的 Tensor:x = torch.zeros(5, 3, dtype=torch.long)print(x)直接根据数据创建x = torch.tensor([5.5, 3])print(x)tensor([5.50转载 2021-03-29 17:13:11 · 96 阅读 · 0 评论 -
anaconda 创建pytorch环境
https://download.pytorch.org/whl/torch_stable.htmlconda create -n pytorch python=3.7pip install xxxxx.whl安装完成后进行测试是否安装成功pythonimport torch import torchvisionprint(torch.__version__)print(torchvision.__version__)检测你的GPU是否可用(cuda是否可用)import torc原创 2021-03-19 14:58:22 · 115 阅读 · 0 评论 -
Pytorch | tensorboardX
我们都知道tensorflow框架可以使用tensorboard这一高级的可视化的工具,为了使用tensorboard这一套完美的可视化工具,未免可以将其应用到Pytorch中,用于Pytorch的可视化。这里特别感谢Github上的解决方案: https://github.com/lanpa/tensorboardX。TensorboardX支持scalar, image, figure, histogram, audio, text, graph, onnx_graph, embedding, pr_原创 2021-03-18 14:22:32 · 182 阅读 · 0 评论 -
Pytorch | torch.utils.data.DataLoader
from torch.utils.data import DataLoaderdataloader = DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None,num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None) # 实例化原创 2021-03-18 14:19:10 · 226 阅读 · 0 评论 -
Pytorch | torch.nn.Module.add_module(name, module)
原文及翻译:add_module(name, module)方法: add_module(name, module) Adds a child module to the current module. 将一个子模块添加到当前模块中. The module can be accessed as an attribute using the given name. 通过给定的名字,我们就可以以访问属性的方式来访问该模块. Parameters 参数 .转载 2021-03-18 14:18:02 · 810 阅读 · 0 评论 -
Pytorch和Torchvision版本对应
转载 2021-03-16 16:02:32 · 475 阅读 · 0 评论 -
PyTorch | 保存和加载模型
文章目录简介一、什么是状态字典(state_dict)二、预测时加载和保存模型1.加载/保存状态字典(推荐做法)2.加载/保存整个模型3.优化器与epoch的保存4. 加载和保存一个通用的检查点(Checkpoint)5. 在同一个文件保存多个模型6. 采用另一个模型的参数来预热模型(Warmstaring Model)7. 不同设备下保存和加载模型总结简介本文主要介绍如何加载和保存 PyTorch 的模型。这里主要有三个核心函数:torch.save :把序列化的对象保存到硬盘。它利用了 Pyt原创 2021-02-03 14:41:43 · 1867 阅读 · 0 评论 -
PyTorch | torchvision.datasets/models/transforms
文章目录前言一、torchvision.datssets二、torchvision.models三、torchvision.transforms前言torchvision是Pytorch的计算机视觉工具库,是Pytorch专门用于处理图像的库。主要由3个子包组成,分别是:torchvision.datasets、torchvision.models、torchvision.transforms。即目前流行的数据集,模型结构和常用的图片转换工具。一、torchvision.datssets包含很多常原创 2021-02-03 14:40:55 · 477 阅读 · 0 评论