#今日论文推荐# 谷歌研究人员提出“通才型”智能体Multi-Game Decision Transformers,深入探索“通才型”模型研究方向
人工智能的长期目标之一,是训练出一种“通才型”的、可以同时解决各种不同类型任务的“多面手”通用模型。
目前,在 AI 领域中以计算机视觉、自然语言处理以及二者交叉等子领域的技术进展最为迅猛。这些子领域进展的重要策略之一,就是通过模型大小的缩放以及微调来实现针对某一任务最优的性能。
也就是说,对于大型或跨环境的任务,通过在大型、多样化的、甚至与任务无直接关系的数据集的训练,来构建基于转换器的大规模模型可以实现强大的功能。而针对单个任务或同一环境中的多个任务,通过使用更小的模型就可以达到与大模型同样的效果。这一在视觉和语言领域得到成功的策略,是否也适用于针对“通才型”模型的跨多种环境的强化学习和训练呢?针对这一问题,谷歌的研究人员进行了研究.
论文题目:Multi-Game Decision Transformers
详细解读:https://www.aminer.cn/research_report/62abfdaa7cb68b460fd48da0?download=falsehttps://www.aminer.cn/research_report/62abfdaa7cb68b460fd48da0?download=false
AMiner链接:https://www.aminer.cn/?f=cs