13、机器学习分类与回归模型全解析

机器学习分类与回归模型全解析

1. 多输出分类

多输出分类是一种特殊的分类任务,它是多标签分类的泛化,其中每个标签可以是多类的,即可以有两个以上的可能值。以下是关于多输出分类的详细介绍:
- 多标签分类示例 :以判断数字是否具有较大值以及是否为奇数为例。首先创建一个 KNeighborsClassifier 分类器实例,该分类器支持多标签分类。然后使用包含多个目标元素的数组对其进行训练。训练完成后,就可以进行预测。

# 假设 some_digit 是一个数字样本
knn_clf.predict([some_digit])
# 输出示例
array([[False, True]])

在这个例子中,预测结果表明该数字不具有较大值( False )且是奇数( True )。
- 多输出分类评估 :评估多标签分类器性能有多种方法,具体指标的选择取决于项目的性质。一种常见的方法是计算每个标签的 F1 分数,然后求平均值。

from sklearn.model_selection import cross_val_predict
from sklearn.metrics import f1_score

# 交叉验证预测
y_train_knn_pred = cross_val_predict(knn_clf, X_train, y_multilab
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值