机器学习分类与回归模型全解析
1. 多输出分类
多输出分类是一种特殊的分类任务,它是多标签分类的泛化,其中每个标签可以是多类的,即可以有两个以上的可能值。以下是关于多输出分类的详细介绍:
- 多标签分类示例 :以判断数字是否具有较大值以及是否为奇数为例。首先创建一个 KNeighborsClassifier
分类器实例,该分类器支持多标签分类。然后使用包含多个目标元素的数组对其进行训练。训练完成后,就可以进行预测。
# 假设 some_digit 是一个数字样本
knn_clf.predict([some_digit])
# 输出示例
array([[False, True]])
在这个例子中,预测结果表明该数字不具有较大值( False
)且是奇数( True
)。
- 多输出分类评估 :评估多标签分类器性能有多种方法,具体指标的选择取决于项目的性质。一种常见的方法是计算每个标签的 F1 分数,然后求平均值。
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import f1_score
# 交叉验证预测
y_train_knn_pred = cross_val_predict(knn_clf, X_train, y_multilab