41、从异构数据学习的自举方法

从异构数据学习的自举方法

1. 引言

在机器学习领域,多数现有的算法是为处理单一数据源的数据而设计的。然而,在现实生活的许多应用场景中,与学习问题相关的可能存在多个数据源。在这种情况下,同时有效地探索和利用这些信息源以做出更好的推断是非常有必要的,这种学习问题通常被称为多视图学习,其中每个视图对应一个数据源。

多视图学习在不同的应用领域有很多实例。例如,在蛋白质分类问题中,蛋白质可以通过多种生物数据来描述,像蛋白质相互作用网络和基因表达谱。前者的数据可以自然地用图来表示,而后者中每个蛋白质则被表示为一个实数向量。此外,蛋白质在细胞中的共定位、结构相似性以及蛋白质序列数据等其他类型的数据也可能存在。由于不同的数据源描述了蛋白质功能的不同方面,综合利用所有这些数据源有助于提高分类的准确性。

当数据源以图的形式呈现时,一种常见的策略是在学习或推断之前将多个图的信息进行合并,主要有两种图合并方法:图的求和以及谱核的求和。但在本文中,我们采用了一种不同的方法。我们不进行图或核的合并,而是在每个图上训练一个分类器,让其独立地对(未标记)实例的标签进行预测。该算法以迭代的方式工作,在每一轮学习中,将部分分类器预测的标签添加到其余分类器的训练集中。这里我们假设是半监督学习的设置,即除了已知标签的训练实例外,还提供了需要进行预测的未标记实例。

我们提出的方法可以看作是两种流行的半监督技术的结合。一方面,由于该方法使用前一次迭代中预测的标签来扩充下一次迭代的(标记)训练集,这与自举法(更准确地说是协同训练算法)类似;另一方面,在每次迭代中,该方法使用基于图的半监督学习器,因此它也是基于图的。此前已有相关工作尝试将自举法和基于图的半监督方法结合起来,而本文将这一研究扩展到了存在多个

【源码免费下载链接】:https://renmaiwang.cn/s/os2te 大整数乘法是计算机科学中的一个重要领域,特别是在算法设计和数学计算中有着广泛应用。它涉及到处理超过标准整型变量范围的数值运算。在C++编程语言中,处理大整数通常需要自定义数据结构和算法,因为内置的`int`、`long long`等类型无法满足大整数的存储和计算需求。以下是对这个主题的详细阐述:1. **大整数数据结构**: 在C++中,实现大整数通常采用数组或链表来存储每一位数字。例如,可以使用一个动态分配的数组,每个元素表示一个位上的数字,从低位到高位排列。这种数据结构允许我们方便地进行加减乘除等操作。2. **乘法算法**: - **暴力乘法**:最直观的方法是类似于小学的竖式乘法,但效率较低,时间复杂度为O(n^2)。 - **Karatsuba算法**:由Alexander Karatsuba提出,将两个n位数的乘法转化为三个较小的乘法,时间复杂度为O(n^1.585)。 - **Toom-Cook算法**:比Karatsuba更通用,通过多项式插值和分解进行计算,有不同的变体,如Toom-3、Toom-4等。 - **快速傅里叶变换(FFT)**:当处理的大整数可以看作是多项式系数时,可以利用FFT进行高效的乘法,时间复杂度为O(n log n)。FFT在数论和密码学中尤其重要。3. **算法实现**: 实现这些算法时,需要考虑如何处理进位、溢出等问题,以及如何优化代码以提高效率。例如,使用位操作可以加速某些步骤,同时要确保代码的正确性和可读性。4. **源代码分析**: "大整数乘法全解"的源代码应包含了上述算法的实现,可能还包括了测试用例和性能比较。通过阅读源码,我们可以学习如何将理论算法转化为实际的程序,并理解各种优化技巧。5. **加说明**: 通常,源代码附带的说明会解释
内容概要:本文详细介绍了一个基于Java与Vue技术栈的向量数据库语义检索与相似文档查重系统的设计与实现。系统通过集成BERT等深度学习模型将文本转化为高维语义向量,利用Milvus等向量数据库实现高效存储与近似最近邻检索,结合前后端分离架构完成从文档上传、向量化处理、查重分析到结果可视化的完整流程。项目涵盖需求分析、系统架构设计、数据库建模、API接口规范、前后端代码实现及部署运维等多个方面,并提供了完整的代码示例和模块说明,支持多格式文档解析、智能分段、自适应查重阈值、高亮比对报告生成等功能,具备高扩展性、安全性和多场景适用能力。; 适合人群:具备一定Java和Vue开发基础的软件工程师、系统架构师以及从事自然语言处理、知识管理、内容安全等相关领域的技术人员,尤其适合高校、科研机构、企业IT部门中参与智能文档管理系统开发的专业人员。; 使用场景及目标:①应用于学术论文查重、企业知识产权保护、网络内容监控、政务档案管理等需要高精度语义比对的场景;②实现深层语义理解下的文档查重,解决传统关键词匹配无法识别语义改写的问题;③构建可扩展、高可用的智能语义检索平台,服务于多行业数字化转型需求。; 阅读建议:建议读者结合提供的完整代码结构与数据库设计进行实践操作,重点关注文本向量化、向量数据库集成、前后端协同逻辑及安全权限控制等核心模块。在学习过程中应逐步部署运行系统,调试关键接口,深入理解语义检索与查重机制的工作原理,并可根据实际业务需求进行功能扩展与模型优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值