解一元线性同余方程组

参见:维基百科

线性同余方程组的求解可以分解为求若干个线性同余方程。比如,对于线性同余方程组:

2x ≡ 2 ( mod 6)
3x ≡ 2 ( mod 7)
2x ≡ 4 ( mod 8)

首先求解第一个方程,得到x ≡ 1 (mod 3),于是令x = 3k + 1,第二个方程就变为:

9k ≡ −1 ( mod 7)

解得k ≡ 3 (mod 7)。于是,再令k = 7l + 3,第三个方程就可以化为:

42l ≡ −16 ( mod 8)

解出:l ≡ 0 (mod 4),即 l = 4m。代入原来的表达式就有x = 21(4m) + 10 = 84m + 10,即解为:

x ≡ 10 ( mod 84)

对于一般情况下是否有解,以及解得情况,则需用到数论中的中国剩余定理。

代码:

typedef long long int64;

int64 a[10000],b[10000];

void exgcd(int64 a,int64 b,int64 &d,int64 &x,int64 &y)
{
    if(!b)
    {
    	d=a;
        x=1;
        y=0;
    }
    else
    {
        exgcd(b,a%b,d,y,x);
        y-=a/b*x;
    }
}
int64 solve(int n)   //x=b[i](mod a[i])
{
    int64 ta=a[0],tb=b[0];
    bool flag=true;
    for(int i=1; i<n; i++)
    {
        int64 xa=ta,xb=a[i],c=b[i]-tb,d,x,y;
        exgcd(xa,xb,d,x,y);
        if(c%d)
        {
            flag=false;
            break;
        }
        int64 tmp=xb/d;
        x=(x*(c/d)%tmp+tmp)%tmp;
        tb=ta*x+tb;
        ta=ta/d*a[i];
    }
    if(!flag)   //方程组无解 
		return -1; 
    return tb;
}

另外:这里所求的解小于LCM(b数组所有元素)且非负数,即最小非负整数解。设b数组所有元素的最小公倍数为LCM,最小非负整数解为X0,则通解:X=x0+LCM*k,其中k为整数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值