10.4
思路:
用线段树维护区间内a~z 的个数,每次询问拆成26 个区间修改操作。也就是说处理出一个区间a~z 的个数,然后按升序降序区间修改。常数有点大,需要卡卡。比如query的时候返回一个结构体什么的。
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 100010;
int a[maxn], n, T, cnt[50], sum[50];
char s[maxn];
inline const int read(){
register int f = 1, x = 0;
register char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9') x = (x<<3) + (x<<1) + ch - '0', ch = getchar();
return x;
}
struct Node{
Node *ls, *rs;
int cnt[27], flag;
Node(){ flag = 0 ; memset( cnt , 0 , sizeof( cnt )) ;}
Node operator+( const Node &a ) const{
Node tmp = Node();
for(int i=1; i<=26; ++i)
tmp.cnt[i] = cnt[i] + a.cnt[i] ;
return tmp;
}
void pushdown(int lf, int rg){
if( flag ){
int mid = (lf + rg) >> 1;
ls->cnt[flag] = mid - lf + 1;
ls->flag = flag;
rs->cnt[flag] = rg - mid;
rs->flag= flag;
for(int i=1; i<=26; ++i)
if(i != flag) ls->cnt[i] = rs->cnt[i] = 0;
flag = 0;
}
}
void update(){
for(int i=1; i<=26; ++i)
cnt[i] = ls->cnt[i] + rs->cnt[i];
}
}pool[maxn*20], *tail = pool, *rot;
inline Node* build(int lf, int rg){
Node *nd = ++tail;
if(lf == rg) {
for(int i=1; i<=26; ++i) nd->cnt[i] = 0;
nd->cnt[a[lf]]++;
return nd;
}
int mid = (lf + rg) >> 1;
nd->ls = build(lf, mid);
nd->rs = build(mid+1, rg);
nd->update();
return nd;
}
inline void modify(Node *nd, int lf, int rg, int L, int R, int data){
if(L <= lf && rg <= R){
nd->cnt[data] = rg - lf + 1;
nd->flag = data;
for(int i=1; i<=26; ++i)
if(i != data) nd->cnt[i] = 0;
return;
}
nd->pushdown(lf, rg);
int mid = (lf + rg) >> 1;
if(L <= mid) modify(nd->ls, lf, mid, L, R, data);
if(R > mid) modify(nd->rs, mid+1, rg, L, R, data);
nd->update();
return;
}
inline Node query(Node *nd, int lf, int rg , int L , int R ){
if( L <= lf && rg <= R )
return *nd;
Node rt = Node() ;
nd->pushdown(lf, rg) ;
int mid = ( lf + rg ) >> 1 ;
if( L <= mid ) rt = rt + query( nd->ls, lf , mid , L , R ) ;
if( R > mid ) rt = rt + query( nd->rs, mid+1, rg , L , R ) ;
return rt ;
}//返回一个结构体(内有cnt[1~26]),就只需要run一次,而不是26次了。
inline int query_point(Node *nd, int lf, int rg, int pos){
if(lf == rg){
for(int i=1; i<=26; ++i)
if(nd->cnt[i]) return i;
}
nd->pushdown(lf, rg);
int mid = (lf + rg) >> 1, rt = 0;
if(pos <= mid) rt = query_point(nd->ls, lf, mid, pos);
else rt = query_point(nd->rs, mid+1, rg, pos);
nd->update();
return rt;
}
int main(){
freopen("string.in", "r", stdin);
freopen("string.out", "w", stdout);
n = read(), T = read();
scanf("%s", s+1);
for(register int i=1; i<=n; ++i) a[i] = s[i] - 'a' + 1;
rot = build(1, n);
for(int i=1; i<=T; ++i){
int l = read(), r = read(), opt = read();
Node t = query(rot, 1, n, l, r);//答案结构体
for(int j=1; j<=26; ++j) sum[j] = t.cnt[j];
int st = l;
if( opt ){
for(int j=1; j<=26; ++j)
if( sum[j] ) modify(rot, 1, n, st, st+sum[j]-1, j), st += sum[j];
}
else{
for(int j=26; j>=1; --j)
if( sum[j] ) modify(rot, 1, n, st, st+sum[j]-1, j), st += sum[j];
}
}
for(register int j=1; j<=n; ++j) printf("%c", query_point(rot, 1, n, j) + 'a' - 1);
return 0;
}
/*
5 2
cabcd
1 3 1
3 5 0
*/