Birthday (背包dp)

10.9

01背包和完全背包的结合体,可以两个都跑一遍,但是相互关系要搞清楚。
我的做法是这样的,
Dp[i][j][0/1]表示前i件商品花费了j的代价的代价时能得到的最多的糖果数,0表示这件商品还没有被买过,1表示这件商品已经买过.

dp[i][j+w[i]][1]=max(dp[i][j][1]+a[i],dp[i][j+w[i]][1]);
dp[i][j+w[i]][1]=max(dp[i][j][0]+a[i]+b[i],dp[i][j+w[i]][1]);

标算

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long dp[1024][2048][2];
int w[1024],a[1024],b[1024];
int main()
{
    int T,n,m;
    long long ans=0;
    //scanf("%d",&T);
    freopen("birthday.in","r",stdin);
    freopen("birthday.out","w",stdout);
    T=1;
    while(T--)
    {
        ans=0;
        memset(dp,0,sizeof(dp));
        scanf("%d%d",&n,&m);
        for(int i=1; i<=n; i++)
            scanf("%d%d%d",&w[i],&a[i],&b[i]);
        for(int i=1; i<=n; i++)
        {
            for(int j=0;j<=m;j++)
            dp[i][j][0]=max(dp[i-1][j][0],dp[i-1][j][1]);

            for(int j=0; j+w[i]<=m; j++)
            {
                dp[i][j+w[i]][1]=max(dp[i][j][1]+a[i],dp[i][j+w[i]][1]);
                dp[i][j+w[i]][1]=max(dp[i][j][0]+a[i]+b[i],dp[i][j+w[i]][1]);
            }
        }
        for(int i=1; i<=n; i++)
            for(int j=0; j<=m; j++)
                {
                    ans=max(dp[i][j][0],dp[i][j][1]);
                }
        printf("%d\n",ans);
    }
    return 0;
}

我写的一维直接一边01,一边完全。
因为正常情况下收益a+b都要优于a,所以要取a的话,a+b已经先取了。(应该是对的吧,毕竟没几个人这样写)

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define LL long long 
#define N 1010
using namespace std;

int n, m;
int f[2 * N];
int w[N], a[N], b[N];

inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

int main(){
    freopen ("birthday.in", "r", stdin);
    freopen ("birthday.out", "w", stdout);
    scanf("%d%d", &n, &m);
    for(register int i=1; i<=n; i++){
        w[i] = read(), a[i] = read(), b[i] = read();
        a[i] += b[i];
        for(register int j=m; j>=w[i]; j--){
            f[j] = max(f[j], f[j-1]);
            if(f[j-w[i]] + a[i] > f[j]){
                f[j] = f[j-w[i]] + a[i];
            }
        }//01背包 
        a[i] -= b[i];
        for(register int j=w[i]; j<=m; j++){
            f[j] = max(f[j], f[j-1]);
            if(f[j-w[i]] + a[i] > f[j]){
                f[j] = f[j-w[i]] + a[i];
            }
        }//完全背包 
    }
    cout << f[m] << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值