10.9
01背包和完全背包的结合体,可以两个都跑一遍,但是相互关系要搞清楚。
我的做法是这样的,
Dp[i][j][0/1]表示前i件商品花费了j的代价的代价时能得到的最多的糖果数,0表示这件商品还没有被买过,1表示这件商品已经买过.
dp[i][j+w[i]][1]=max(dp[i][j][1]+a[i],dp[i][j+w[i]][1]);
dp[i][j+w[i]][1]=max(dp[i][j][0]+a[i]+b[i],dp[i][j+w[i]][1]);
标算
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long dp[1024][2048][2];
int w[1024],a[1024],b[1024];
int main()
{
int T,n,m;
long long ans=0;
//scanf("%d",&T);
freopen("birthday.in","r",stdin);
freopen("birthday.out","w",stdout);
T=1;
while(T--)
{
ans=0;
memset(dp,0,sizeof(dp));
scanf("%d%d",&n,&m);
for(int i=1; i<=n; i++)
scanf("%d%d%d",&w[i],&a[i],&b[i]);
for(int i=1; i<=n; i++)
{
for(int j=0;j<=m;j++)
dp[i][j][0]=max(dp[i-1][j][0],dp[i-1][j][1]);
for(int j=0; j+w[i]<=m; j++)
{
dp[i][j+w[i]][1]=max(dp[i][j][1]+a[i],dp[i][j+w[i]][1]);
dp[i][j+w[i]][1]=max(dp[i][j][0]+a[i]+b[i],dp[i][j+w[i]][1]);
}
}
for(int i=1; i<=n; i++)
for(int j=0; j<=m; j++)
{
ans=max(dp[i][j][0],dp[i][j][1]);
}
printf("%d\n",ans);
}
return 0;
}
我写的一维直接一边01,一边完全。
因为正常情况下收益a+b都要优于a,所以要取a的话,a+b已经先取了。(应该是对的吧,毕竟没几个人这样写)
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define LL long long
#define N 1010
using namespace std;
int n, m;
int f[2 * N];
int w[N], a[N], b[N];
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int main(){
freopen ("birthday.in", "r", stdin);
freopen ("birthday.out", "w", stdout);
scanf("%d%d", &n, &m);
for(register int i=1; i<=n; i++){
w[i] = read(), a[i] = read(), b[i] = read();
a[i] += b[i];
for(register int j=m; j>=w[i]; j--){
f[j] = max(f[j], f[j-1]);
if(f[j-w[i]] + a[i] > f[j]){
f[j] = f[j-w[i]] + a[i];
}
}//01背包
a[i] -= b[i];
for(register int j=w[i]; j<=m; j++){
f[j] = max(f[j], f[j-1]);
if(f[j-w[i]] + a[i] > f[j]){
f[j] = f[j-w[i]] + a[i];
}
}//完全背包
}
cout << f[m] << endl;
}