前言
研究lightnet源代码时,看到这种技巧,惊为天人,于是单独摘出来。
感谢作者EAVISE,lightnet传送门。
一、 使用OrderedDict([ ])
import torch
import torch.nn as nn
from collections import OrderedDict
layer_list = [
# Sequence 1 :
OrderedDict([
('1_conv2d', nn.Conv2d(512, 64, 1, 1)),
('2_Relu', nn.ReLU(inplace=True) ),
]),
# Sequence 2 :
OrderedDict([
('3_conv2d', nn.Conv2d((4*64)+1024, 1024, 3, 1)),
('4_bn', nn.BatchNorm2d(1024, 16, 1, 1, 0)),
]),
]
sequence_list=[nn.Sequential(layer_dict) for layer_dict in layer_list]
是不是很简单,是不是很轻松写意?
我们看看原理。
这个是利用了nn.Sequential的构造函数,只需要传入一个OrderedDict对象,就能把里面的nn.module全部加进自己的seuqential序列中来。
详见Sequential的__init__方法:
class Sequential(Module):
"""
# Example of using Sequential
model = nn.Sequential(
nn.Conv2d(1,20,5),
nn.ReLU(),
nn.Conv2d(20,64,5),
nn.ReLU()
)
# Example of using Sequential with OrderedDict
model = nn.Sequential(OrderedDict([
('conv1', nn.Conv2d(1,20,5)),
('relu1', nn.ReLU()),
('conv2', nn.Conv2d(20,64,5)),
('relu2', nn.ReLU())
]))
"""
def __init__(self, *args):
super(Sequential, self).__init__()
if len(args) == 1 and isinstance(args[0], OrderedDict):
for key, module in args[0].items():
self.add_module(key, module)
else:
for idx, module in enumerate(args):
self.add_module(str(idx), module)
于是,我们通过这句代码:
sequence_list=[nn.Sequential(layer_dict) for layer_dict in layer_list]
得到sequence_list ,其中任意一个元素,都是一个nn.Sequential类的实例对象。
更进一步的,我们可以把 list of nn.Sequential 包装为 nn.ModuleList
module_list = nn.ModuleList(sequence_list)
这步也是利用到了nn.ModuleList的构造方法,传入一个list of nn.sequential,合并这个list。
#nn.ModuleList构造函数
def __init__(self, modules=None):
super(ModuleList, self).__init__()
if modules is not None:
self += modules
可以看到直接用了self += xxx ,
这是因为 nn.ModuleList 类可以当成list来使用。
一般场景中没有太大区别,例如:
#nn.ModuleList可以当list来使用
def myforward(self,x):
for _ , module in enumerate(module_list):
x = module(x)
return x
需要注意的是,我们构造OrderedDict()时,传入一个list of tuple
在二元组tuple内,有格式:('name', module)
对第一个元素 'name' 的要求是,
1.必须为str类型,判断方法是isinstance(name,torch._six.string_classes) ;
2.不能与已有的属性重名。判断方法是if hasattr(self, name) and name not in self._modules ;
3.不能含有点字符'.',以免引起解释器歧义。判断方法是 if '.' in name ;
5.不能为空。 判断方法是if name=='' ;
通过之后,就会在字典冲增加一条:
self._modules[name] = module
二、 与直接使用nn.Sequential()的区别
我们来看看两种构造方式的区别。
一般情况下,如果用不指定name的方法来构造Sequential,
默认的name会按照顺序依次为0,1,2,3,4......
model = nn.Sequential(
nn.Conv2d(1,20,5),
nn.ReLU(),
nn.Conv2d(20,64,5),
nn.ReLU()
)
print(model.modules)
#output:
<bound method Module.modules of Sequential(
(0): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU()
(2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))
(3): ReLU()
)>
在方法一中,由于我们约定了name,output会变成如下形式,
<bound method Module.modules of Sequential(
(1_conv2d): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))
(2_Relu): ReLU(inplace)
)>
三、用自定义layer充当积木
前面我们是用nn.Conv2d和nn.ReLU等公用积木搭网络。
那么能不能自己设计一些自定义的layer呢?
比如我们平时Conv2d之后又要batchnorm,又要LeakyReLU。
能不能直接设计一个layer,叫做ConvBNLeaky(),一块积木顶三块呢?
lightnet的作者真是奇才,当真做到了这一点。
我怎么就想不到呢。
看代码:
class Conv2dBatchLeaky(nn.Module):
""" This convenience layer groups a 2D convolution, a batchnorm and a leaky ReLU.
They are executed in a sequential manner.
Args:
in_channels (int): Number of input channels
out_channels (int): Number of output channels
kernel_size (int or tuple): Size of the kernel of the convolution
stride (int or tuple): Stride of the convolution
padding (int or tuple): padding of the convolution
leaky_slope (number, optional): Controls the angle of the negative slope of the leaky ReLU; Default **0.1**
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1, leaky_slope=0.1):
super(Conv2dBatchLeaky, self).__init__()
# Parameters
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
if isinstance(kernel_size, (list, tuple)):
self.padding = [int(ii/2) for ii in kernel_size]
else:
self.padding = int(kernel_size/2)
self.leaky_slope = leaky_slope
# Layer
self.layers = nn.Sequential(
nn.Conv2d(self.in_channels, self.out_channels, self.kernel_size, self.stride, self.padding, bias=False),
nn.BatchNorm2d(self.out_channels), #, eps=1e-6, momentum=0.01),
nn.LeakyReLU(self.leaky_slope, inplace=True)
)
def __repr__(self):
s = '{name} ({in_channels}, {out_channels}, kernel_size={kernel_size}, stride={stride}, padding={padding}, negative_slope={leaky_slope})'
return s.format(name=self.__class__.__name__, **self.__dict__)
def forward(self, x):
x = self.layers(x)
return x
这样就可以了!!!
这样一来,Conv2dBatchLeaky就变成跟nn.Conv2d同等级的类了,因为也是继承自nn.Module。
之后可以用方法一来直接构造网络。
from xxx import Conv2dBatchLeaky
layer_1 = OrderedDict([
('1_conv2d', Conv2dBatchLeaky(512, 64, 1, 1)),
])
sequence = nn.Sequential(layer_1)
一行顶三行,简单无脑易操作!