💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
在表面粗糙度的研究中,利用粒子群优化算法(Particle Swarm Optimization, PSO)来优化反向传播神经网络(Back Propagation Neural Network, BPNN)是一种有效的方法,旨在提高模型预测的准确性和效率。以下是一个基于这一思路的研究框架和步骤:
1. 问题定义与数据收集
- 定义问题:明确研究目标是预测或优化加工过程中的表面粗糙度。
- 数据收集:收集与表面粗糙度相关的各种参数数据,如切削速度、进给率、切削深度、刀具材料、工件材料等。
2. 数据预处理
- 数据清洗:去除异常值、缺失值等。
- 特征选择:选择对表面粗糙度有显著影响的特征。
- 数据归一化:将特征数据缩放到同一尺度,通常使用最小-最大归一化或Z-score标准化。
3. 构建BP神经网络模型
- 确定网络结构:包括输入层、隐藏层(可能有多层)、输出层的神经元数量。
- 激活函数选择:常用的激活函数有Sigmoid、ReLU等,根据问题特性选择合适的激活函数。
- 初始化权重和偏置:随机初始化网络参数。
4. 粒子群优化算法(PSO)
- 初始化粒子群:每个粒子代表BP神经网络的一组权重和偏置,随机初始化粒子的位置和速度。
- 适应度函数:定义适应度函数来评估每个粒子的性能,通常使用BP神经网络在验证集上的预测误差(如MSE、RMSE等)作为适应度值。
- 更新粒子位置和速度:根据粒子的当前位置、个体历史最优位置和全局最优位置,以及速度更新公式,更新粒子的位置和速度。
- 迭代优化:重复执行适应度评估、更新位置和速度,直到达到预设的迭代次数或满足其他停止条件。
5. 模型训练与验证
- 使用PSO优化后的BP神经网络参数进行训练。
- 划分数据集:将数据集分为训练集、验证集和测试集。
- 训练模型:在训练集上训练模型。
- 验证模型:在验证集上评估模型性能,调整模型参数(如网络结构、学习率等)。
- 测试模型:在测试集上测试模型的泛化能力。
6. 结果分析与讨论
- 性能评估:分析模型在测试集上的预测性能,如预测精度、误差分布等。
- 参数敏感性分析:探讨不同参数对模型性能的影响。
- 对比实验:与未优化的BP神经网络、其他机器学习模型进行对比,评估PSO-BPNN的优势。
7. 结论与展望
- 总结研究成果:概述PSO-BPNN在表面粗糙度预测中的有效性和优势。
- 提出改进方向:针对研究中发现的问题和不足,提出未来的研究方向和改进措施。
📚2 运行结果
部分代码:
%% Get the optimal initial weight and bias
w1 = zbest(1 : inputnum * hiddennum);
B1 = zbest(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = zbest(inputnum * hiddennum + hiddennum + 1 : inputnum * hiddennum ...
+ hiddennum + hiddennum * outputnum);
B2 = zbest(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...
inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);
%% Plug the value into NN
net.Iw{1, 1} = reshape(w1, hiddennum, inputnum);
net.Lw{2, 1} = reshape(w2, outputnum, hiddennum);
net.b{1} = reshape(B1, hiddennum, 1);
net.b{2} = B2';
%% Open the traning window
net.trainParam.showWindow = 1;
%% Train the NN
net = train(net, p_train, t_train);
%% Prediction result using PSO-BP
t_sim1 = sim(net, p_train); %prediction result for training set
t_sim2 = sim(net, p_test ); %prediction result for test set
% Data inverse-normalization
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% Prediction with BPNN
net0 = newff(p_train, t_train, hiddennum);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]高海兵,高亮,周驰,等.基于粒子群优化的神经网络训练算法研究[J].电子学报, 2004, 32(9):3.DOI:10.3321/j.issn:0372-2112.2004.09.044.
[2]曾万里,危韧勇,陈红玲.基于改进PSO算法的BP神经网络的应用研究[J].计算机技术与发展, 2008.DOI:JournalArticle/5aebbc9cc095d710d4f5d97b.
[3]倪守斌,程武山.粒子群算法优化BP神经网络的变载荷自平衡控制系统[J].西安科技大学学报, 2017, 37(6):5.DOI:10.13800/j.cnki.xakjdxxb.2017.0624.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取