【表面粗糙度】基于粒子群PSO算法优化-BP神经网络的表面粗糙度研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

1. 问题定义与数据收集

2. 数据预处理

3. 构建BP神经网络模型

4. 粒子群优化算法(PSO)

5. 模型训练与验证

6. 结果分析与讨论

7. 结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

在表面粗糙度的研究中,利用粒子群优化算法(Particle Swarm Optimization, PSO)来优化反向传播神经网络(Back Propagation Neural Network, BPNN)是一种有效的方法,旨在提高模型预测的准确性和效率。以下是一个基于这一思路的研究框架和步骤:

1. 问题定义与数据收集

  • 定义问题:明确研究目标是预测或优化加工过程中的表面粗糙度。
  • 数据收集:收集与表面粗糙度相关的各种参数数据,如切削速度、进给率、切削深度、刀具材料、工件材料等。

2. 数据预处理

  • 数据清洗:去除异常值、缺失值等。
  • 特征选择:选择对表面粗糙度有显著影响的特征。
  • 数据归一化:将特征数据缩放到同一尺度,通常使用最小-最大归一化或Z-score标准化。

3. 构建BP神经网络模型

  • 确定网络结构:包括输入层、隐藏层(可能有多层)、输出层的神经元数量。
  • 激活函数选择:常用的激活函数有Sigmoid、ReLU等,根据问题特性选择合适的激活函数。
  • 初始化权重和偏置:随机初始化网络参数。

4. 粒子群优化算法(PSO)

  • 初始化粒子群:每个粒子代表BP神经网络的一组权重和偏置,随机初始化粒子的位置和速度。
  • 适应度函数:定义适应度函数来评估每个粒子的性能,通常使用BP神经网络在验证集上的预测误差(如MSE、RMSE等)作为适应度值。
  • 更新粒子位置和速度:根据粒子的当前位置、个体历史最优位置和全局最优位置,以及速度更新公式,更新粒子的位置和速度。
  • 迭代优化:重复执行适应度评估、更新位置和速度,直到达到预设的迭代次数或满足其他停止条件。

5. 模型训练与验证

  • 使用PSO优化后的BP神经网络参数进行训练
  • 划分数据集:将数据集分为训练集、验证集和测试集。
  • 训练模型:在训练集上训练模型。
  • 验证模型:在验证集上评估模型性能,调整模型参数(如网络结构、学习率等)。
  • 测试模型:在测试集上测试模型的泛化能力。

6. 结果分析与讨论

  • 性能评估:分析模型在测试集上的预测性能,如预测精度、误差分布等。
  • 参数敏感性分析:探讨不同参数对模型性能的影响。
  • 对比实验:与未优化的BP神经网络、其他机器学习模型进行对比,评估PSO-BPNN的优势。

7. 结论与展望

  • 总结研究成果:概述PSO-BPNN在表面粗糙度预测中的有效性和优势。
  • 提出改进方向:针对研究中发现的问题和不足,提出未来的研究方向和改进措施。

📚2 运行结果

部分代码:

%%  Get the optimal initial weight and bias
w1 = zbest(1 : inputnum * hiddennum);
B1 = zbest(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = zbest(inputnum * hiddennum + hiddennum + 1 : inputnum * hiddennum ...
    + hiddennum + hiddennum * outputnum);
B2 = zbest(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...
    inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);
%%  Plug the value into NN
net.Iw{1, 1} = reshape(w1, hiddennum, inputnum);
net.Lw{2, 1} = reshape(w2, outputnum, hiddennum);
net.b{1}     = reshape(B1, hiddennum, 1);
net.b{2}     = B2';

%%  Open the traning window 
net.trainParam.showWindow = 1;        

%%  Train the NN
net = train(net, p_train, t_train);

%%  Prediction result using PSO-BP
t_sim1 = sim(net, p_train);    %prediction result for training set
t_sim2 = sim(net, p_test );    %prediction result for test set

%  Data inverse-normalization
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%% Prediction with BPNN
net0 = newff(p_train, t_train, hiddennum);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]高海兵,高亮,周驰,等.基于粒子群优化的神经网络训练算法研究[J].电子学报, 2004, 32(9):3.DOI:10.3321/j.issn:0372-2112.2004.09.044.

[2]曾万里,危韧勇,陈红玲.基于改进PSO算法的BP神经网络的应用研究[J].计算机技术与发展, 2008.DOI:JournalArticle/5aebbc9cc095d710d4f5d97b.

[3]倪守斌,程武山.粒子群算法优化BP神经网络的变载荷自平衡控制系统[J].西安科技大学学报, 2017, 37(6):5.DOI:10.13800/j.cnki.xakjdxxb.2017.0624.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值