💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于麻雀优化算法(SSA)优化CNN-BiGRU-Attention模型进行风电功率预测的研究,是一个结合了群体智能优化算法与深度学习模型的复杂课题。以下是对该研究的详细探讨:
一、研究背景与意义
随着可再生能源技术的快速发展,风电作为其中的重要组成部分,其功率预测的准确性对于能源系统的调度优化与经济效益具有重要意义。然而,风电功率受多种因素影响,如风速、风向、温度、湿度等,呈现出高度的复杂性和不确定性。因此,如何提高风电功率预测的精度成为了研究热点。
二、麻雀优化算法(SSA)
1. 算法原理
麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种基于群体智能的优化算法,其灵感来源于麻雀在寻找食物时的行为。SSA通过模拟麻雀的觅食和反捕食行为,在搜索空间中寻找最优解。该算法具有较好的全局搜索能力和收敛性,适用于解决复杂的优化问题。
2. 优点
- 较强的全局搜索能力,能够在较大的搜索空间内快速定位到较优解。
- 收敛速度快,能够在较短的迭代次数内达到稳定的解。
- 参数设置简单,易于实现和调试。
三、CNN-BiGRU-Attention模型
1. 模型结构
CNN-BiGRU-Attention模型结合了卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(Attention)。其中,CNN用于提取输入数据的空间特征,BiGRU用于捕捉时间序列中的长期依赖关系,而Attention机制则用于自动寻找和聚焦于对输出影响较大的信息。
2. 模型优势
- CNN能够自动学习图像或序列数据的局部特征,减少手工特征提取的工作量。
- BiGRU能够同时考虑前向和后向的信息,更全面地捕捉时间序列数据中的长期依赖关系。
- Attention机制能够提高模型处理复杂数据的能力,尤其是在多变的风力发电场景中。
四、SSA优化CNN-BiGRU-Attention模型
1. 优化目标
利用SSA算法对CNN-BiGRU-Attention模型的参数进行优化,以提高模型的预测精度和泛化能力。具体来说,SSA算法通过模拟麻雀的觅食行为,在参数空间中搜索最优的参数组合。
2. 优化过程
- 初始化:随机生成一定数量的麻雀(即参数组合),并给它们分配初始位置和速度。
- 搜索与更新:每只麻雀在当前位置随机选择一个目标点(即新的参数组合),并朝着目标点移动。在移动过程中,麻雀会记录自己的最优解(即模型在当前参数组合下的最优预测性能),并观察周围麻雀的最优解,以此来更新自己的移动方向和速度。
- 迭代:重复上述搜索与更新过程,直到满足停止条件(如达到最大迭代次数或模型性能不再显著提升)。
3. 预期效果
通过SSA算法的优化,CNN-BiGRU-Attention模型能够更准确地捕捉风电功率数据的时空特性,提高预测的精度和稳定性。同时,由于SSA算法的全局搜索能力和收敛性较好,因此能够在一定程度上避免模型陷入局部最优解的问题。
五、结论与展望
基于麻雀优化算法(SSA)优化CNN-BiGRU-Attention模型进行风电功率预测的研究,具有重要的理论意义和实际应用价值。未来,随着技术的不断进步和数据的日益丰富,该模型有望在风电功率预测领域取得更加显著的成果。同时,也可以进一步探索其他优化算法与深度学习模型的结合方式,以进一步提升预测精度和效率。
📚2 运行结果
部分代码:
% 指标计算
disp('…………训练集误差指标…………')
[mae1,rmse1,mape1,error1]=calc_error(T_train1,T_sim1);
fprintf('\n')
figure('Position',[200,300,600,200])
plot(T_train1);
hold on
plot(T_sim1)
legend('真实值','预测值')
title('CNN-BiGRU-ATTENTION训练集预测效果对比')
xlabel('样本点')
ylabel('发电功率')
disp('…………测试集误差指标…………')
[mae2,rmse2,mape2,error2]=calc_error(T_test2,T_sim2);
fprintf('\n')
figure('Position',[200,300,600,200])
plot(T_test2);
hold on
plot(T_sim2)
legend('真实值','预测值')
title('CNN-BiGRU-ATTENTION预测集预测效果对比')
xlabel('样本点')
ylabel('发电功率')
figure('Position',[200,300,600,200])
plot(T_sim2-T_test2)
title('CNN-BiGRU-ATTENTION误差曲线图')
xlabel('样本点')
ylabel('发电功率')
%% 优化CNN-BiGRU-Attention
disp(' ')
disp('优化CNN_BiLSTM_attention神经网络:')
%% 初始化参数
popsize=10; %初始种群规模
maxgen=8; %最大进化代数
fobj = @(x)objectiveFunction(x,numFeatures,outdim,vp_train,vt_train,vp_test,T_test,ps_output);
% 优化参数设置
lb = [0.001 10 2 2]; %参数的下限。分别是学习率,biGRU的神经元个数,注意力机制的键值, 卷积核大小
ub = [0.01 50 50 10]; %参数的上限
dim = length(lb);%数量
% 可选:'DBO','GWO','OOA','PSO','SABO','SCSO','SSA','BWO','RIME','WOA','HHO','NGO';
[Best_score,Best_pos,curve]=NGO(popsize,maxgen,lb,ub,dim,fobj); %修改这里的函数名字即可
setdemorandstream(pi);
%% 绘制进化曲线
figure
plot(curve,'r-','linewidth',2)
xlabel('进化代数')
ylabel('均方误差')
legend('最佳适应度')
title('进化曲线')
%% 把最佳参数Best_pos回带
[~,optimize_T_sim] = objectiveFunction(Best_pos,numFeatures,outdim,vp_train,vt_train,vp_test,T_test,ps_output);
setdemorandstream(pi);
%% 比较算法预测值
str={'真实值','CNN-BiGRU-Attention','优化后CNN-BiGRU-Attention'};
figure('Units', 'pixels', ...
'Position', [300 300 860 370]);
plot(T_test,'-','Color',[0.8500 0.3250 0.0980])
hold on
plot(T_sim2,'-.','Color',[0.4940 0.1840 0.5560])
hold on
plot(optimize_T_sim,'-','Color',[0.4660 0.6740 0.1880])
legend(str)
set (gca,"FontSize",12,'LineWidth',1.2)
box off
legend Box off
%% 比较算法误差
test_y = T_test;
Test_all = [];
y_test_predict = T_sim2;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
y_test_predict = optimize_T_sim;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
str={'真实值','CNN-BiGRU-Attention','优化后CNN-BiGRU-Attention'};
str1=str(2:end);
str2={'MAE','MAPE','MSE','RMSE','R2'};
data_out=array2table(Test_all);
data_out.Properties.VariableNames=str2;
data_out.Properties.RowNames=str1;
disp(data_out)
%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的
color= [0.66669 0.1206 0.108
0.1339 0.7882 0.8588
0.1525 0.6645 0.1290
0.8549 0.9373 0.8275
0.1551 0.2176 0.8627
0.7843 0.1412 0.1373
0.2000 0.9213 0.8176
0.5569 0.8118 0.7882
1.0000 0.5333 0.5176];
figure('Units', 'pixels', ...
'Position', [300 300 660 375]);
plot_data_t=Test_all(:,[1,2,4])';
b=bar(plot_data_t,0.8);
hold on
for i = 1 : size(plot_data_t,2)
x_data(:, i) = b(i).XEndPoints';
end
for i =1:size(plot_data_t,2)
b(i).FaceColor = color(i,:);
b(i).EdgeColor=[0.3353 0.3314 0.6431];
b(i).LineWidth=1.2;
end
for i = 1 : size(plot_data_t,1)-1
xilnk=(x_data(i, end)+ x_data(i+1, 1))/2;
b1=xline(xilnk,'--','LineWidth',1.2);
hold on
end
ax=gca;
legend(b,str1,'Location','best')
ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};
set(gca,"FontSize",10,"LineWidth",1)
box off
legend box off
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]许亮,任圆圆,李俊芳.基于NGO-CNN-BiLSTM神经网络的动态质子交换膜燃料电池剩余使用寿命预测[J].汽车工程师, 2024(003):000.
[2]李卓,叶林,戴斌华,等.基于IDSCNN-AM-LSTM组合神经网络超短期风电功率预测方法[J].高电压技术, 2022(6):2117-2127.
[3]贾睿,杨国华,郑豪丰,等.基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J].中国电力, 2022, 55(5):47-56.DOI:10.11930/j.issn.1004-9649.202104023.
[4]李艳、彭春华、傅裕、孙惠娟.基于CNN-LSTM网络模型的风电功率短期预测研究[J].华东交通大学学报, 2020, 37(4):7.DOI:CNKI:SUN:HDJT.0.2020-04-017.
[5]张子华,李琰,徐天奇,等.基于VMD-CNN-LSTM的短期风电功率预测研究[J].云南民族大学学报:自然科学版, 2023.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取