一个机器人玩抛硬币的游戏,一直不停的抛一枚不均匀的硬币,硬币有A,B两面,A面的概率为3/4,B面的概率为1/4。问第一次出现连续的两个A年的时候,机器人抛硬币的次数的期望是多少?

一个机器人玩抛硬币的游戏,一直不停的抛一枚不均匀的硬币,硬币有A,B两面,A面的概率为3/4,B面的概率为1/4。问第一次出现连续的两个A年的时候,机器人抛硬币的次数的期望是多少?

假设T为扔的次数(期望)。 那么如果扔到B,则重新开始扔,即再扔T次。
第一次扔到B,则重新扔,即1/4*(1+T);这时1+T是结束游戏所扔次数;
第一次扔到A,第二次扔到B,重新扔,即3/41/4(2+T);2+T是结束游戏所仍次数;
第一次扔到A,第二次扔到A,结束游戏。3/43/42;2为结束游戏所仍次数;
所以T=1/4*(1+T)+3/4 1/4(2+T)+3/4 *3/4 *2;算得T为28/9

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值