论文题目:Adversarial PoseNet: AStructure-aware Convolutional Network for Human
PoseEstimation
出处:ICCV 2017
主要贡献:
1、我们设计了一种新颖的人体姿态估计网络框架,它考虑了人类关节连接性的几何约束。通过将人体的先验知识整合在一起,可以大大减少因遮挡和杂乱的背景而引起的预测错误。即使网络失败了,网络的输出也更像是“人”的预测而不是“机器”的预测。
2、根据我们的最佳知识,我们是第一个使用GAN来利用受限的人姿分布来改善人的姿态估计。我们还设计了一个堆叠的多任务网络,用于预测姿态热图和遮挡热图,以达到更好的效果。
3、在LSP Human Pose和MPII Human Pose数据集评估,性能优异。
Motivation:
以前的方法主要是采用DCNNs对每个身体部分的热图进行回归的策略。这些回归模型显示了学习更好的特征表示的巨大能力。然而,对于重度遮挡的身体部位(尤其是周围人的身体部位)和与身体部位相似的背景,DCNNs可能会难以回归精确的热图。
人类的视觉能够从观察中学习人类形体结构的多样性和无限。即使在极端的遮挡下,我们也可以推断出潜在的姿势,并移除不可信的姿势。