SAGANPose | 隐式结构化对抗人体姿态估计网络

SAGANPose是一种利用生成对抗网络(GAN)进行人体姿态估计的方法,通过隐式考虑人体结构先验,解决了关键点遮挡和人体重叠带来的预测难题。它包括多任务生成器、姿态鉴别器P和置信度鉴别器C,以提高姿态的准确性和置信度。
摘要由CSDN通过智能技术生成

Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation
Official Code: pytorch

1.背景分析

关键点遮挡和人体重叠会导致人体姿态估计的难度增大,在这种情况下,可能会产生生物学上难以置信的姿势预测。相反,人类视觉能够通过利用联合互连的人体关节间的几何约束来预测姿势。 为了通过结合关于人体结构的先验来解决该问题,本文尝试使用生成对抗网络的形式,以在训练时隐式考虑这些先验信息,因为显式学习此类约束通常具有挑战性。基于此,本文设计了一个多任务生成器用以生成精准的人体关键点,设计了姿态辨别器P使得生成器获取的人体关键点视觉友好,设计了置信度鉴别器C使得生成器获取的人体关键点置信度高。

2.隐式结构化生成对抗网络

如下图所示,我们的对抗姿态估计网络分为三部分,1用于生成姿态的生成器网络,2用于鉴别姿态的鉴别器网络,3用于鉴别置信度的鉴别器网络。其中生成器输出32个heatmap图,其中16个是关键点heatmap,另外16个是与其对应的关键点遮挡heatmap。下图中的(1)分支,展示了没有对抗操作情况下,常规人体姿态估计网络的损失计算和参数更新方法。下图中的(2)分支,展示了利用置信度鉴别器C来辅助训练生成器G,将会产生更加可信的置信值结果。下图中的(3)分支࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yuanCruise

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值