Opencv之canny算子有关的知识

相关知识
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

相关程序


```cpp
#include "stdafx.h"

//本节讲述 图像处理之 canny边缘检测;
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;

Mat src, dst, dst1, dst2, dst3, dst4, dst6, dst5, gray_src;
int threshold_value = 50;
int threshold_max = 255;
void Canny_Demo(int,void*);

const char*output_title = "canny双阈值处理";
char input_title[] = "原图";

int main(int argc, char**argv)
{
	src = imread("C:/Users/Rubison.DELL/Desktop\\杂物/壁纸/小白2.jpg");  //存放自己图像的路径 
	if (!src.data)
	{
		printf("could not load image...\r\n");
		return -1;
	}

	namedWindow(input_title, CV_WINDOW_AUTOSIZE);
	imshow(input_title, src);
	//GaussianBlur(src, dst1, Size(3, 3), 0, 0);
	cvtColor(src, gray_src, CV_BGR2GRAY);
	Canny_Demo(0,0);
	//Laplacian(gray_src, dst2, CV_16S, 3);
	//convertScaleAbs(dst2, dst2);
	//imshow("拉普拉斯算子", dst2);  //噪点比较明显,因此进行阈值运算
	//threshold(dst2, dst2, 0, 255, THRESH_OTSU | THRESH_BINARY);

	createTrackbar("Threshold Value", output_title, &threshold_value, threshold_max, Canny_Demo);
	/*imshow("拉普拉斯算子+自动阈值化", dst2);*/

	waitKey(0);
	destroyAllWindows();
	return 0;



}
void Canny_Demo(int, void*)
{
	blur(gray_src, gray_src, Size(3, 3), Point(-1, -1), BORDER_DEFAULT);
	Canny(gray_src, dst4, threshold_value, threshold_value*2,3,false);
	imshow("检测dst4", dst4);
	dst5.create(src.size(), src.type());   //这两行代码是将原像素颜色拷贝到二值图中
	//imshow("检测dst5", dst5);
	src.copyTo(dst5, dst4);                //从而生成彩色边缘图

	imshow(output_title, dst5);

}


**运行结果**
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200927140321976.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3c1ODc1ODk1,size_16,color_FFFFFF,t_70#pic_center)

**备注:** 相关整理的很好的文章
1.[参考文章1](https://mp.weixin.qq.com/s?src=3&timestamp=1601186133&ver=1&signature=z4eFpkoXsFvVXYvJtcTsr0F7JsxUdXnTLVa*-7Xy4hIhtTHM7ODkzrWArc01YGgM9doUAxLvOke1y8lwKKWYEz8dwo31CGClyn1HSeRa4sncTJA0U2XklYOz42MFDEB*KYg86yek1oFV6ZlxPQgUI-rqCHRxO2c6mG-G9UieNi4=)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

w5875895

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值