3. 自定义图表:
导入Matplotlib库和NumPy库
import matplotlib.pyplot as plt
import numpy as np定义数据点的 x 和 y 值
x = [1, 2, 3, 4] # x 值
y = [10, 15, 13, 18] # y 值使用 plot 函数绘制线条图,并设置线条的样式,颜色,标记和标签
plt.plot(x, y, color=‘red’, linestyle=‘–’, marker=‘o’, label=‘Data Points’)
设置 x 轴标签
plt.xlabel(‘X-axis’)
设置 y 轴标签
plt.ylabel(‘Y-axis’)
设置图表标题
plt.title(‘Simple Line Plot’)
显示图例
plt.legend()
显示网格线
plt.grid(True)
显示绘制的图形
plt.show()
4. 绘制多个图形:
导入Matplotlib库和NumPy库
import matplotlib.pyplot as plt
import numpy as np创建第一个子图(2行1列,第一个子图)
plt.subplot(2, 1, 1)
plt.plot([1, 2, 3, 4]) # 在第一个子图中绘制折线图,x轴默认为[0, 1, 2, 3]创建第二个子图(2行1列,第二个子图)
plt.subplot(2, 1, 2)
plt.plot([4, 3, 2, 1]) # 在第二个子图中绘制折线图,x轴默认为[0, 1, 2, 3]显示绘制的图形
plt.show()
5. 绘制散点图:
导入Matplotlib库和NumPy库
import matplotlib.pyplot as plt
import numpy as np定义数据点的 x 和 y 值,以及散点的大小
x = [1, 2, 3, 4] # x 值
y = [10, 15, 13, 18] # y 值
sizes = [20, 50, 80, 200] # 散点大小使用scatter函数绘制散点图,并设置散点的大小、颜色和透明度
plt.scatter(x, y, s=sizes, c=‘r’, alpha=0.5) # 设置散点的大小、颜色为红色、透明度为0.5
显示绘制的散点图
plt.show()
6. 绘制条形图:
导入Matplotlib库和NumPy库
import matplotlib.pyplot as plt
import numpy as np定义条形图的 x 和 y 值
x = [‘A’, ‘B’, ‘C’, ‘D’] # 类别
y = [10, 20, 15, 25] # 数值使用bar函数绘制条形图,并设置颜色为蓝色
plt.bar(x, y, color=‘blue’)
设置 x 轴标签
plt.xlabel(‘Categories’)
设置 y 轴标签
plt.ylabel(‘Values’)
设置图表标题
plt.title(‘Bar Chart’)
显示绘制的图形
plt.show()
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)
基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!**
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)