大数据-81 Spark 安装配置环境 集群环境配置 超详细 三台云服务器

27 篇文章 0 订阅

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(正在更新!)

章节内容

上节我们完成了:

  • Spark 简单介绍
  • Spark 的特点
  • Spark 与 Hadoop MapReduce 框架对比
  • Spark的系统架构
  • Spark的部署模式

在这里插入图片描述

Spark简介

上节我们已经介绍过了,这里为了保持完整性,简单的再扩展介绍一下。
Spark(Apache Spark)是一个快速、通用的分布式数据处理框架,旨在以高效的方式进行大规模数据的处理和分析。它最初由加利福尼亚大学伯克利分校AMPLab开发,并在2010年开源。如今,Spark已经成为大数据处理领域的重要工具之一,广泛应用于许多行业。
Spark凭借其速度、通用性和易用性,成为大数据处理领域的一项关键技术。无论是处理批量数据还是实时数据,亦或是进行机器学习和图计算,Spark都提供了强大的支持。如果你在寻找一个高效的大数据处理框架,Spark无疑是一个值得考虑的选择。

核心特性

  • 速度:Spark的一个显著特性是速度。它利用内存中的数据处理能力,相比于基于磁盘的Hadoop MapReduce,Spark可以在某些情况下快上100倍。此外,Spark支持内存和磁盘混合计算,在内存不足时将数据部分存储在磁盘中,以确保任务的顺利执行。

  • 通用性:Spark提供了丰富的API,可以用Java、Scala、Python和R语言编写程序。它支持多种大数据处理任务,包括批处理、交互式查询、实时流处理、机器学习和图计算等。这些特性使得Spark成为一个非常灵活的工具,适用于各种数据处理需求。

  • 易用性:Spark的编程模型简单且高效,它基于“弹性分布式数据集”(RDD)的概念,允许开发者以函数式编程的风格来处理数据集。对于已经熟悉Hadoop的开发者来说,Spark的学习曲线较为平滑。此外,Spark SQL模块提供了类似于SQL的查询接口,方便数据分析人员使用。

  • 扩展性:Spark被设计为可以处理大规模数据集,支持从单节点运行到大规模集群上运行。它可以通过YARN、Mesos、Kubernetes等资源管理器进行集群资源调度,具备良好的扩展性,能够在大规模集群环境中高效工作。

Spark的组件

  • Spark Core:这是Spark的核心模块,负责内存管理、任务调度、错误恢复、与存储系统的交互等基础功能。Spark Core引入了RDD,这是一种容错的分布式数据集合,能够高效地进行并行计算。

  • Spark SQL:这个组件使得结构化数据的处理更加简单。它支持使用SQL语句对数据进行查询,同时可以与Spark的其他模块无缝集成。此外,Spark SQL还支持与Hive兼容,能够读取Hive中的数据。

  • Spark Streaming:该模块用于处理实时数据流。它将实时数据划分为多个小批次,并使用Spark的核心API对每个批次的数据进行处理。这种微批处理方式使得实时处理更加简洁和高效。

  • MLlib:这是Spark的机器学习库,提供了各种机器学习算法,如分类、回归、聚类、协同过滤等。此外,它还提供了数据处理、特征工程和模型评估等工具,能够帮助开发者快速构建和部署机器学习模型。

  • GraphX:用于图计算的模块,提供了图操作和一套用于图并行计算的API,支持图的遍历、路径搜索、连接组件、PageRank等操作。

使用场景

Spark广泛应用于各种需要大规模数据处理的场景,包括但不限于:

  • 批处理:处理大量历史数据,如日志分析、ETL操作。
  • 流处理:实时数据分析和处理,如网络监控、实时推荐系统。
  • 机器学习:大规模数据上的机器学习任务,如推荐系统、文本分类。
  • 交互式查询:通过Spark SQL对大数据集进行快速查询和分析。
  • 图计算:处理社交网络、推荐系统中的复杂图结构数据。

下载文件

我们到官方地址下载:

https://archive.apache.org/dist/spark/

页面如下,为了保证稳定和学习的方便,我用了比较老的版本:2.4.5
在这里插入图片描述
我们选择:without-hadoop-scala 这种版本,可以不用安装配置 Scala:

https://archive.apache.org/dist/spark/spark-2.4.5/spark-2.4.5-bin-without-hadoop-scala-2.12.tgz

在这里插入图片描述

解压配置

我们可以使用 wget 或者其他工具来完成文件的下载,我这里是传到服务器上:

cd /opt/software/
wget https://archive.apache.org/dist/spark/spark-2.4.5/spark-2.4.5-bin-without-hadoop-scala-2.12.tgz

在这里插入图片描述
下载完成后,我们进行解压并移动到指定位置:

cd /opt/software/
tar zxvf spark-2.4.5-bin-without-hadoop-scala-2.12.tgz

在这里插入图片描述
移动目录到servers下(之前的规范):

mv spark-2.4.5-bin-without-hadoop-scala-2.12 ../servers

在这里插入图片描述

环境变量

vim /etc/profile
# spark
export SPARK_HOME=/opt/servers/spark-2.4.5-bin-without-hadoop-scala-2.12
export PATH=$PATH:$SPARK_HOME/bin

配置完的结果,记得刷新环境变量
在这里插入图片描述

修改配置

cd $SPARK_HOME/conf

slaves

mv slaves.template slaves
vim slaves

# 集群地址
h121.wzk.icu
h122.wzk.icu
h123.wzk.icu

配置完的样子大概如下:
在这里插入图片描述

spark-defaults

mv spark-defaults.conf.template spark-defaults.conf
vim spark-defaults.conf

# 修改配置的信息
spark.master spark://h121.wzk.icu:7077
spark.eventLog.enabled true
spark.eventLog.dir hdfs://h121.wzk.icu:9000/spark-eventLog
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.driver.memory 512m

配置完的结果如下图:
在这里插入图片描述

创建HDFS目录

hdfs dfs -mkdir /spark-eventLog

spark-env

mv spark-env.sh.template spark-env.sh
vim spark-env.sh

# 修改如下的配置内容
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
export HADOOP_HOME=/opt/servers/hadoop-2.9.2
export HADOOP_CONF_DIR==/opt/servers/hadoop-2.9.2/etc/hadoop
export SPARK_DIST_CLASSPATH=$(/opt/servers/hadoop-2.9.2/bin/hadoop classpath)
export SPARK_MASTER_HOST=h121.wzk.icu
export SPARK_MASTER_PORT=7077

配置完成截图如下:
在这里插入图片描述

分发软件

传输文件

使用我们之前编写的 rsync-script 工具。当然你也可以每台都配置一次也行,只要保证环境一致即可。
(之前Hadoop等都使用过,如果你没有,你可以用复制或者别的方式)

rsync-script /opt/servers/spark-2.4.5-bin-without-hadoop-scala-2.12

过程会很漫长,请耐心等待:
在这里插入图片描述
文件传输分发完毕:
在这里插入图片描述

环境变量

每天机器都需要配置环境变量!!!

/etc/profile

h122 服务器

在这里插入图片描述

h123 服务器

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

武子康

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值