数据归一化方法部分整合

一. 将数据归一化到任意区间范围的方法:
X是当前数据区间, [ X m i n , X m a x ] \left[ X_{min},X_{max} \right] [Xmin,Xmax]又可视为当前样本数据的最小值和最大值,
Y是要映射归一化到的区间, [ Y m i n , Y m a x ] \left[ Y_{min},Y_{max} \right] [Ymin,Ymax]
x是现有的样本数据中需要归一化的任一值,
y是x对应归一化后映射的区间中的值,
公式:
y = Y m i n + Y m a x − Y m i n X m a x − X m i n ∗ ( x − X m i n ) y = Y_{min}+\frac{Y_{max}-Y_{min}}{X_{max}-X_{min}}*(x-X_{min}) y=Ymin+XmaxXminYmaxYmin(xXmin)

原文链接:https://blog.csdn.net/willduan1/article/details/80448493

二. 映射到 [ 0 , 1 ] \left[ 0,1 \right] [0,1]区间的方法:
原文链接:https://blog.csdn.net/Poo_Chai/article/details/83542887

  1. Min_Max Normalization(离差标准化)
    使结果落到 [ 0 , 1 ] \left[ 0,1 \right] [0,1]区间,x是当前要归一化的值, x n o r m x_{norm} xnorm则是x对应在 [ 0 , 1 ] \left[ 0,1 \right] [0,1]区间的值, X m a x , X m i n X_{max},X_{min} XmaxXmin分别是当前样本的最大值和最小值。
    公式:
    x n o r m = x − X m i n X m a x − X m i n x_{norm}=\frac{x-X_{min}}{X_{max}-X_{min}} xnorm=XmaxXminxXmin

  2. z-score标准化(zero-mean normalization)
    又称为标准差标准化,经过处理的数据符合标准正态分布,即均值为0,标准差为1, μ \mu μ是所有样本数据的均值, σ \sigma σ是所有样本的标准差,是SPSS中最为常用的标准化方法。
    公式:
    x n o r m = x − μ σ x_{norm}= \frac{x-\mu}{\sigma} xnorm=σxμ

下面两种基本上都要求样本数据大于等于0或1
3. Log 函数转换
通常以10为底的log函数转换方法同样可以实现归一化,注意所有的数据必须大于1, log ⁡ 10 \log_{10} log10通常可以记作 lg ⁡ \lg lg, X m a x X_{max} Xmax表示样本的最大值。
公式:
x n o r m = lg ⁡ ( x ) lg ⁡ ( X m a x ) x_{norm}= \frac{\lg(x)}{\lg(X_{max})} xnorm=lg(Xmax)lg(x)

  1. atan函数转换
    用反正切函数实现数据的归一化
    注意,如果样本数据中的数据小于0,则这些数据会被映射到 [ − 1 , 0 ] \left[ -1,0 \right] [1,0]区间上,如果想样本数据归一化到 [ 0 , 1 ] \left[ 0,1 \right] [0,1]区间,则样本数据需要全部都大于等于0.
    公式:
    x n o r m = a t a n ( x ) ∗ 2 π x_{norm}=atan(x)* \frac{2}{\pi} xnorm=atan(x)π2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值