目录
1.内容介绍
2.部分代码
3.实验结果
4.内容获取
1.内容介绍
和声搜索优化算法 (Harmony Search, HS) 是一种基于音乐即兴创作和和谐理论的元启发式优化算法,由Geem等人于2001年提出。HS通过模拟音乐家即兴创作过程中寻找最优和声的过程来解决优化问题。
HS的工作机制主要包括:
- 初始化和声记忆库:随机生成一组初始解,构成和声记忆库。
- 即兴演奏:根据和声记忆库中的现有解,生成新的和声(解),通过选择、调整和随机化操作来探索解空间。
- 更新和声记忆库:如果新生成的和声优于和声记忆库中的某个解,则替换掉后者。
优点包括:
- 全局搜索能力:HS能够有效地探索解空间的不同区域。
- 参数少:相比其他优化算法,HS的参数较少,易于设置。
- 灵活性:适用于多种优化问题,包括连续和离散优化。
不足之处:
- 收敛速度:HS的收敛速度相对较慢,可能需要较多的迭代次数才能找到最优解。
- 早熟收敛:在某些情况下,HS可能会过早收敛到局部最优解。
- 参数敏感性:尽管参数较少,但算法性能仍受参数选择的影响。
HS的应用范围广泛,例如:
- 工程设计:优化机械部件设计、电路设计等,考虑多个性能指标。
- 资源分配:解决生产调度、物流管理等问题,平衡多个目标。
- 机器学习:用于特征选择、参数调优等,提高模型性能。
- 经济金融:投资组合优化、风险管理等,平衡风险与收益。
总之,HS作为一种独特且有效的优化算法,在处理复杂优化问题方面展现了显著的优势。随着进一步的研究和应用,HS将在更多领域发挥重要作用。
2.部分代码
clc;
clear;
close all;
%% 问题定义
CostFunction=@(x) Sphere(x); % 适应度函数
nVar=5; % 决策变量的个数
VarSize=[1 nVar]; % 决策变量矩阵大小
VarMin=-10; % 下限
VarMax= 10; % 上限
%% HS算法参数设置
MaxIt=2000; % 最大迭代数量
HMS=50; % 和声库大小
nNew=40; % 新和声的数量
HMCR=0.9; % 记忆库取值概率
PAR=0.1; % 微调概率
FW=0.02*(VarMax-VarMin); % 音调微调带宽
FW_damp=0.995; % 摩擦宽度阻尼比
%% 初始化
% 定义空和声结构体
empty_harmony.Position=[];
empty_harmony.Cost=[];
% 初始化和声记忆库
HM=repmat(empty_harmony,HMS,1);
% 生成初始和声记忆库
for i=1:HMS
HM(i).Position=unifrnd(VarMin,VarMax,VarSize);
HM(i).Cost=CostFunction(HM(i).Position);
end
% 根据适应度大小排序
[~, SortOrder]=sort([HM.Cost]);
HM=HM(SortOrder);
% 最佳个体
BestSol=HM(1);
% 储存每一代的最佳适应度
BestCost=zeros(MaxIt,1);
%% 算法主循环
for it=1:MaxIt
% 为新和声初始化数组
NEW=repmat(empty_harmony,nNew,1);
% 生成新和声记忆库
for k=1:nNew
% 生成新的和声位置
NEW(k).Position=unifrnd(VarMin,VarMax,VarSize);
for j=1:nVar
if rand<=HMCR
i=randi([1 HMS]);
NEW(k).Position(j)=HM(i).Position(j);
end
% 微调
if rand<=PAR
DELTA=FW*randn();
NEW(k).Position(j)=NEW(k).Position(j)+DELTA;
end
end
% 越界处理
NEW(k).Position=max(NEW(k).Position,VarMin);
NEW(k).Position=min(NEW(k).Position,VarMax);
% 评价
NEW(k).Cost=CostFunction(NEW(k).Position);
end
% 融合和声记忆和新和声
HM=[HM
NEW];
% 排序
[~, SortOrder]=sort([HM.Cost]);
HM=HM(SortOrder);
% 除去额外的和声
HM=HM(1:HMS);
% 更新最佳个体
BestSol=HM(1);
% 储存最佳适应度
BestCost(it)=BestSol.Cost;
% 命令窗口显示
disp(['第' num2str(it) '代最佳适应度: = ' num2str(BestCost(it))]);
FW=FW*FW_damp;
end
%% 结果显示
figure;
semilogy(BestCost,'LineWidth',2);
xlabel('迭代次数');
ylabel('最佳适应度值');
legend('HS')
grid on;
3.实验结果
4.内容获取
和声搜索算法matalb源代码:主页欢迎自取,点点关注,非常感谢!