High-level Semantic Feature Detection: A New Perspective for Pedestrian Detection

论文地址
总体介绍
目标检测的方法分为两类:滑动窗口;基于anchor的识别。但是这两种会出现冗余。故提出本文的方法、
本文的方法:提供了新的视角,检测目标用高层语义特征来实现。找到物体的中心点即可。
如下为本文的结构:
结构

在这里插入图片描述
首先将输出的图片送入到ConvNet网络中,将在ConvNet网络中的输出结果通过卷积将该结果分为center heatmap和scale map;center heatmap的作用是检测物体的中心点;scale map的作用是预测图像所在的位置。

具体结构图

在这里插入图片描述
目标检测的任务:一般分为两步:第一步是特征提取,第二部是检测;
特征提取:
使用ResNet50作为基础网络,将state3、4、5分为放大2 4 8将其分辨率处理为与state2相同的分辨率,然后执行按照通道维度的级联,将级联的结果送入到检测部分。
检测头部:
将级联的特征经过 3乘3 卷积,通道数为256,之后,使用两个滑动的 1乘1的卷积将其分开,一部分分为中心检测的热图,另一部分是预测。然后最后执行同时预测,然后输出检测结果。
在这里插入图片描述
在本图中,给定边界框的标识,可以得到中心的位置和尺寸预测,及图(b)的结构。
中心的位置为正样本,其余部分是负样本。这里会涉及到公式具体参考论文。
实验
本文使用ResNet50作为backbone,使用Caltech和CityPersons作为数据集进行测试。
实验1 测试对中心点的预测:
在这里插入图片描述
从该图可以看出,在中心点预测,IoU=0.5的错误率要比其他的都低,对于0.75而言,同样也是相同的起作用的。说明,在中心点预测可以增加正确率。
实验2 尺寸预测:
在这里插入图片描述
从该图可以看出,在预测的时候关注物体的高度对实验结果要比关注其他的形式结果要好。
实验3:不同特征映射的因素
在这里插入图片描述
实验4:不同层的特征映射在不同结构中的对比
在这里插入图片描述
文章后面还有在不同的数据集上对比实验。或者是对位置的测试。详细内容可以看论文。
总结
本文可取的几点:首先可以将不同层的特征先级联,然后进行处理;其次对目标检测,可以考虑先找中心点,然后在检测;行人检测的数据集:Catchle;cityperson。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值