Description
为了便于牛们欣赏和锻炼,农夫JOHN在他的农场上新添加了一个美丽的池塘。 JOHN的池塘是一个长方形,他已经把它划分成了M行N列的小正方行 (1 <= M <= 30; 1 <= N <= 30). 某些正方行里是石头,另外一些则是特别结实的荷叶,其余则只有清水。 为了锻炼,Bessie想从一片荷叶跳到另外一片。她的每一次跳跃都是一个象棋中的马步:两行一列或一行两列。 JOHN看到了Bessie并且发现有时Bessie没有办法达到她的目标荷叶。他准备添加一些荷叶来让Bessie完成她的目标。当然,荷叶不能放在石头上。 帮助JOHN找出他最少要放多少片荷叶和他一共有多少种放最少片荷叶的方案。
Input
第1行: 两个整数, M 和 N。
第2~M+1行: 第i+1包含N个数,分别为第i行的N个格子的情况。 0表示格子为空,1表示有一片荷叶,2表示格子里有石头,3表示此格子是Bessie的起点,4 表示此格子是Bessie的目标。
Output
第1行: 一个数,最少情况下需要添加的荷叶数目。如果没有方案存在,输出- 1。
第2行: 一个数,达到最小值的方案总数。这个数保证不超过内设64位整数(long long/ int64)的大小。如果第一行是-1,不要输出此行。
Sample Input
4 5
1 0 0 0 0
3 0 0 0 0
0 0 2 0 0
0 0 0 4 0
输入解释:
池塘含4行5列。Bessie在第2行第1列并且想跳到第4行第4列。池塘里有1块
石头和3片荷叶。
Sample Output
2
3
输出解释:
至少需要2片荷叶。一共有三种摆法:
第4行第2列,第2行第3列
第1行第3列,第3行第2列
第1行第3列,第2行第5列
R1C2,R2C3 R1C3,R3C2 R1C3,R2C5
1 0 0 0 0 1 0 X 0 0 1 0 X 0 0
3 0 X 0 0 3 0 0 0 0 3 0 0 0 X
0 0 2 0 0 0 X 2 0 0 0 0 2 0 0
0 X 0 4 0 0 0 0 4 0 0 0 0 4 0
题解
对于每个0号点,向8个方向搜索,搜到0号点则向其连一条代价为1的边,若搜到1号点,则继续搜索,直到找到0号点,连代价为1的边。这样对于第一问,直接求最短路,对于第二问,再求最短路时求最短路路径数即为方案数。
代码
#include<bits/stdc++.h>
#define inf 1000000
#define N 150005
#define M 1000005
#define ll long long
const int xx[8]={1,1,-1,-1,2,2,-2,-2},yy[8]={2,-2,2,-2,1,-1,1,-1};
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int tot,ret[M],Next[M],len[M],Head[N];
int n,m,a[55][55],S,T;
bool vis[55][55],flag[N];
ll ans[N];int dis[N];
struct node{int x,y;};
inline void ins(int u,int v,int l)
{
ret[++tot]=v;len[tot]=l;
Next[tot]=Head[u];Head[u]=tot;
}
int num(int x,int y){return (x-1)*m+y;}
void bfs(int s,int t)
{
memset(vis,0,sizeof(vis));queue<node>q;
q.push((node){s,t});vis[s][t]=1;
while (!q.empty())
{
int nx=q.front().x,ny=q.front().y;q.pop();
for (int i=0;i<8;i++)
{
int x=nx+xx[i],y=ny+yy[i];
if (x<1||x>n||y<1||y>m||a[x][y]==2||vis[x][y]) continue;
vis[x][y]=1;
if (a[x][y]==0) ins(num(s,t),num(x,y),1);
if (a[x][y]==4) ins(num(s,t),num(x,y),0);
if (a[x][y]==1) q.push((node){x,y});
}
}
}
void spfa()
{
for (int i=1;i<=n*m;i++) dis[i]=inf;
queue<int>q;
q.push(S);dis[S]=0;flag[S]=1;ans[S]=1LL;
while (!q.empty())
{
int now=q.front();q.pop();
for (int i=Head[now];i;i=Next[i])
{
if (dis[ret[i]]>dis[now]+len[i])
{
dis[ret[i]]=dis[now]+len[i];
ans[ret[i]]=ans[now];
if (!flag[ret[i]])flag[ret[i]]=1,q.push(ret[i]);
}
else if (dis[ret[i]]==dis[now]+len[i])
{
ans[ret[i]]+=ans[now];
if (!flag[ret[i]])flag[ret[i]]=1,q.push(ret[i]);
}
}
flag[now]=0;
}
}
int main()
{
n=read();m=read();
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
{
a[i][j]=read();
if (a[i][j]==3) S=num(i,j);
if (a[i][j]==4) T=num(i,j);
}
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
if (a[i][j]==0||a[i][j]==3) bfs(i,j);
spfa();if (dis[T]==inf) return puts("-1"),0;
printf("%d\n%lld",dis[T],ans[T]);
return 0;
}