一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍数。
例如:N = 8,数组A包括:2 5 6 3 18 7 11 19,可以选2 6,因为2 + 6 = 8,是8的倍数。
Input
第1行:1个数N,N为数组的长度,同时也是要求的倍数。(2 <= N <= 50000)
第2 - N + 1行:数组A的元素。(0 < A[i] <= 10^9)
Output
如果没有符合条件的组合,输出No Solution。
第1行:1个数S表示你所选择的数的数量。
第2 - S + 1行:每行1个数,对应你所选择的数。
Input示例
8
2
5
6
3
18
7
11
19
Output示例
2
2
6
题解
对数列做前缀和,有n+1种前缀和,而模数是n,所以必定存在一段区间和为n的倍数。
代码
#include<bits/stdc++.h>
#define N 2005
#define M 4000005
#define ll long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n,a[50005],f[50005],p[50005],sum[50005];
int main()
{
n=read();f[0]=1;
for (int i=1;i<=n;i++)
a[i]=read();
for (int i=1;i<=n;i++)
{
sum[i]=(sum[i-1]+a[i])%n;
if (f[sum[i]])
{
printf("%d\n",i-p[sum[i]]);
for (int j=p[sum[i]]+1;j<=i;j++)
printf("%d\n",a[j]);
return 0;
}
f[sum[i]]=1;p[sum[i]]=i;
}
return 0;
}