本章出现的重要术语:充分调整集(sufficient adjustment set)
什么是因果推理?
本章目录
- 辛普森悖论
- 相关性不能说明有因果
- 那么,什么表明了因果?
- 观测实验的因果
辛普森悖论
Eg:新冠问题
目标:
决定A B两种新冠治疗方法,降低死亡率
预设:
此例设B更稀缺
只能获得医院的数据,不能收集
数据:症状(轻0/重1);治疗(A0/B1);结果(存活0/死亡1)
死亡率图:
总死亡率:A<B
按照症状分开死亡率:A>B
辛普森悖论出现,那到底数字是怎么反转的,谁又是对的呢?
列式看看某治疗方法下,人数的权重对死亡率的影响:
可以看到第一个式子,在疗法A中,0.15权重(1400/1500)远大于0.3的(100/1500)权重:
小的死亡率有大的人口权重,所以总体上,A的死亡率偏小。
与此相对,B小的死亡率有小的人口权重,所以总体上,A的死亡率偏大。
但是常理而言,重病号死亡