《因果推理导论》笔记(一)介绍 Brady Neal

本章出现的重要术语:充分调整集(sufficient adjustment set)

什么是因果推理?

在这里插入图片描述
本章目录

  • 辛普森悖论
  • 相关性不能说明有因果
  • 那么,什么表明了因果?
  • 观测实验的因果

在这里插入图片描述

辛普森悖论
Eg:新冠问题

目标:
决定A B两种新冠治疗方法,降低死亡率

预设:
此例设B更稀缺
只能获得医院的数据,不能收集
数据:症状(轻0/重1);治疗(A0/B1);结果(存活0/死亡1)

死亡率图:

总死亡率:A<B总死亡率:A<B
按照症状分开死亡率:A>B按照症状分开死亡率:A>B

辛普森悖论出现,那到底数字是怎么反转的,谁又是对的呢?

列式看看某治疗方法下,人数的权重对死亡率的影响:
在这里插入图片描述可以看到第一个式子,在疗法A中,0.15权重(1400/1500)远大于0.3的(100/1500)权重:
在这里插入图片描述小的死亡率有大的人口权重,所以总体上,A的死亡率偏小。

与此相对,B小的死亡率有小的人口权重,所以总体上,A的死亡率偏大。
在这里插入图片描述但是常理而言,重病号死亡

【干货书】《因果推理导论-机器学习角度》,132页pdf 有几个主要的主题贯穿全书。这些主题主要是对两个不同类别的比较。当你阅读的时候,很重要的点是你要明白书的不同部分适合什么类别,不适合什么类别。 统计与因果。即使有无限多的数据,我们有时也无法计算些因果量。相比之下,很多统计是关于在有限样本中解决不确定性的。当给定无限数据时,没有不确定性。然而,关联,个统计概念,不是因果关系。在因果推理方面还有更多的工作要做,即使在开始使用无限数据之后也是如此。这是激发因果推理的主要区别。我们在这章已经做了这样的区分,并将在整本书中继续做这样的区分。 识别与评估。因果效应的识别是因果推论所独有的。这是个有待解决的问题,即使我们有无限的数据。然而,因果推理也与传统统计和机器学习共享估计。我们将主要从识别因果效应(在第2章中,4和6)之前估计因果效应(第7章)。例外是2.5节和节4.6.2,我们进行完整的例子估计给你的整个过程是什么样子。 介入与观察。如果我们能进行干预/实验,因果效应的识别就相对容易了。这很简单,因为我们可以采取我们想要衡量因果效应的行动,并简单地衡量我们采取行动后的效果。观测数据变得更加复杂,因为数据中几乎总是引入混杂。 假设。将会有个很大的焦点是我们用什么假设来得到我们得到的结果。每个假设都有自己的框来帮助人们注意到它。清晰的假设应该使我们很容易看到对给定的因果分析或因果模型的批评。他们希望,清晰地提出假设将导致对因果关系的更清晰的讨论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值