利用crop剪裁方式训练图片的一些事项

 transform_param {
    mirror: true
    crop_size: 227
    mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
  }

上面是 caffeNet的 数据层的定义,看得出用了镜像和crop_size,还定义了 mean_file

利用crop_size这种方式可以剪裁中心关注点和边角特征,mirror可以产生镜像,弥补小数据集的不足.

git-issues里面有人问道这个crop_size和 mean_file的问题,一开始的时候是不能定义了crop,又用mean_file的,后来改进了.

并且,这个mean_file和crop_size没什么大关系.只要你这个mean_file是根据你的训练集制作出来的就可以.应该是 先通过mean_file处理一遍数据集,再进行crop操作.

用python接口去调用 python/caffe/ 下面的 ilsvrc_2012_mean.npy 这个文件,显示一下它的 shape,得到 3*256*256,说明,这个mean_file是根据 原数据集制作的,和crop_size 的 227 不一致,但是不影响训练.

这样,就可以先根据 原数据集做出mean_file,再设计想要crop的尺寸,而不用担心 尺寸不一致的问题了 : )

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值