[Matlab小练习]使用Matlab实现牛顿插值法求解方程近似根

一、牛顿插值法介绍

牛顿迭代法,也称为牛顿-拉弗森方法,是一种用于数值逼近求解方程根的迭代方法。它是一种快速、有效的方法,可用于近似计算方程的根。该方法基于泰勒级数展开和线性逼近的概念,通过不断迭代来逼近方程的根。

下面是使用牛顿迭代法求解方程近似根的基本思想和步骤:

  1. 选择一个初始猜测值(近似根),通常称为 x0。

  2. 使用所选的初始值 x0,计算函数 f(x) 在该点的值 f(x0) 以及函数 f(x) 的导数 f'(x) 在该点的值 f'(x0)。这可以通过解析计算或数值近似方法来获取。

  3. 使用初始值 x0 和函数值 f(x0) 以及导数值 f'(x0),应用牛顿迭代公式来计算下一个近似根 x1: x1 = x0 - f(x0) / f'(x0)

  4. 将新的近似根 x1 用作下一次迭代的初始值,重复步骤2和步骤3,得到 x2,然后 x3,依此类推,直到收敛到满足精度要求的近似根。

  5. 迭代过程继续,直到近似根收敛到方程的根,或者达到了预定的迭代次数。

牛顿迭代法的优点包括快速收敛性(通常二次收敛)和高精度。然而,它也有一些限制,如对初始猜测值的依赖性,可能会导致迭代发散或陷入局部极小值。因此,初始猜测值的选择对于该方法的成功非常关键。

二、Matlab实现牛顿迭代法

1.函数文件部分

由于在matlab中定义函数只能在函数文件中定义,所以我们在一个函数文件中写好牛顿迭代法函数,并在实时脚本文件中去调用它

function root = newton_raphson(func, deriv_func, initial_guess, tolerance, max_iterations) 
% func: 目标方程 
% deriv_func: 目标方程的导数 
% initial_guess: 初始猜测值 
% tolerance: 精度 
% max_iterations: 最大迭代次数 
x = initial_guess; 
for i = 1:max_iterations 
fx = func(x); 
if abs(fx) < tolerance 
break; 
end 
dfx = deriv_func(x); 
if dfx == 0 
error('导函数的值为零,不能继续精确计算') 
end 
x = x - fx / dfx; 
end 
root = x; 
end

如果你有工具包的话,可以直接使用工具包去求函数的导函数。本篇文章是直接输入函数的导函数(哭哭哭没有工具包哭哭哭)

在函数文件中,我们设置若干个参数,详细见代码最开始的注释部分,之后使用牛顿迭代法思路,进行求解,直至达到预想精度,返回根

2.实时脚本文件部分

clc;clear
%牛顿法实操部分
% 定义目标方程和它的导数  
func = @(x) x^2 - 2;   % 目标方程  
deriv_func = @(x) 2*x;  % 目标方程的导数  
  
% 提供初始猜测值、精度和最大迭代次数  
initial_guess = 1;  
tolerance = 1e-6;  
max_iterations = 100;  
  
% 调用牛顿迭代法函数求解方程根  
root = newton_raphson(func, deriv_func, initial_guess, tolerance, max_iterations);  
  
% 输出结果  
fprintf('最终的结果为: %.6f\n', root);

在实时脚本文件中,我们使用匿名函数来创建目标函数和目标函数的倒数,并提前设置好初始猜测值、精度和最大迭代次数,最后调用函数文件的牛顿迭代函数计算近似根。

比如,这篇文章中,求根号2的近似根,即x^2 = 2,得到的结果为1.414.。。。。

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值