A*,IDA*,Dijkstra

最近做了很多这方面的题,看了很多前辈们的资料。逐渐对这些算法有了一些理解。

Dijkstra算法就是传统的求最短路算法。每次维护一个堆,记录未找到与源点之间最短路的点,然后不断从中取出最小的点,出堆,然后对其他点跟新。(可用set实现)

A*算法与Dijkstra的区别就是每次出堆的点是到目的点相对最近的(用启发函数计算),然后对其他点跟新。A*算法总可以确定的找到一条最短路径。关于A*的正确性可以参考相关人工智能书籍。

IDA*算法是对迭代加深搜索的优化,是DFS与估计函数的完美结合。它通过设置一个搜索过程中的最大深度,当此状态距离目标状态超过此深度时,便不去搜索。IDA*的初始深度是起始状态到目标状态的估计距离。随着搜索深入调整这个最大深度值,但这个并不像迭代加深搜索每次只能加一。IDA*总的来说省去了A*的判重时间和空间以及存储当前状态的堆,因此空间效率很高。但数据太大时A*就会显示出强大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值