Deep Ritz Method 是鄂维南老师(Weinan E)提出来的一种用神经网络求解PDE的方法, 作为最开始的几篇探讨DeepLearning 与PDE 关系的文章,他的很多思想还是很厉害的, 下面我们来介绍一下这篇文章以及我在实现时遇到的一些问题。
基本思想
对于给定的一个变分问题
我们怎么用神经网络来求解呢?
事实上, 我们把 中的每个点看做训练样本, 将
看做是神经网络的输出, 将
看做是损失函数去优化, 这个问题便解决了。
但是具体实践过程中,有以下几点要注意:
1.采用 Adam 作为优化器, 初始学习率为 1e-3;
2. 网络结构采用 Resnet 结构, 也就是