Deep Ritz Method

Deep Ritz Method 是鄂维南老师(Weinan E)提出来的一种用神经网络求解PDE的方法, 作为最开始的几篇探讨DeepLearning 与PDE 关系的文章,他的很多思想还是很厉害的, 下面我们来介绍一下这篇文章以及我在实现时遇到的一些问题。

基本思想

对于给定的一个变分问题

我们怎么用神经网络来求解呢?

事实上, 我们把 \Omega 中的每个点看做训练样本, 将 u(x)  看做是神经网络的输出, 将 I 看做是损失函数去优化, 这个问题便解决了。

但是具体实践过程中,有以下几点要注意:

1.采用 Adam 作为优化器, 初始学习率为 1e-3;

2. 网络结构采用 Resnet 结构, 也就是

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值