深度ritz方法求解高维泊松方程

42 篇文章 72 订阅 ¥239.90 ¥399.90
本文介绍了使用深度ritz方法和PFNN算法解决高维泊松方程的问题。通过构建变分问题,利用深度学习网络netg和netf结合长度因子来逼近解。在训练过程中,针对高维问题的样本不足和过拟合问题,提出了重新采样策略。同时,讨论了一维和二维卷积神经网络的应用,并提及数据并行代码可能存在的性能反常现象。
摘要由CSDN通过智能技术生成

泊松方程

{ − Δ u = f ,  in  Ω ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Galerkin码农选手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>