你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
https://leetcode-cn.com/problems/house-robber/
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额
示例1:
输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例2:
输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
偷窃到的最高金额 = 2 + 9 + 1 = 12 。
提示:
0 <= nums.length <= 100
0 <= nums[i] <= 400
Java解法
思路:
- 这个好像可以用动态规划来处理
- 第N家:最大值 (包含自己[N+F(N-2)],不包含自己[F(N-1)])
- f(n)= Math.max(f(n-2)+N,f(n-1))
- n=1 ,f(n)=n[1];n=2,f(n)= Math.max(n[1],n[2]);
- 终于对动态规划开点窍了
package sj.shimmer.algorithm.m4_2021;
/**
* Created by SJ on 2021/4/17.
*/
class D80 {
public static void main(String[] args) {
System.out.println(rob(new int[]{1,2,3,1}));
System.out.println(rob(new int[]{2,7,9,3,1}));
}
//f(n)= Math.max(f(n-2)+N,f(n-1))
public static int rob(int[] nums) {
if (nums == null) {
return 0;
}
int length = nums.length;
if (length==0) {
return 0;
}else {
int[] dp = new int[length];
dp[0]=nums[0];
if (length>1) {
dp[1] = Math.max(nums[0], nums[1]);
for (int i = 2; i < length; i++) {
dp[i] = Math.max(dp[i-2]+nums[i],dp[i-1]);
}
}
return dp[length-1];
}
}
}
官方解
https://leetcode-cn.com/problems/house-robber/solution/da-jia-jie-she-by-leetcode-solution/
-
打家劫舍
如上,我参考了调整了计算点,思路一致,但我的没做空间优化
-
时间复杂度:O(n)
-
空间复杂度:O(1)
-