A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
题意:
使1~n的数以1为开头形成一个素数环,即相邻两个数之和为素数。
思路:
深搜,判断末尾数与第一个数之和是否为素数,判断相邻两数之和是否为素数即可。
PE了一次,发现是输出后多了一个空格,不说了都是泪。
代码:
#include<stdio.h>
#include<math.h>
int n,k,m,j,t=1;
int a[30],book[30];
int prime(int x)
{
int k,i;
k=sqrt(x);
for(i=2;i<=k;i++)
{
if(x%i==0)
break;
}
if(i>k)
return 1;
return 0;
}
void dfs(int m)
{
int i;
if(m==n&&prime(a[0]+a[m-1])==1)
{
for(i=0;i<m-1;i++)
printf("%d ",a[i]);
printf("%d\n",a[m-1]);
return;
}
for(i=2;i<=n;i++)
{
if(book[i]==0)
{
if(prime(i+a[m-1])==1)
{
book[i]=1;
a[m++]=i;
dfs(m);
book[i]=0;
m--;
}
}
}
return;
}
int main()
{
int i,t=1;
while(scanf("%d",&n)!=EOF)
{
a[0]=1;
printf("Case %d:\n",t);
dfs(1);
t++;
printf("\n");
}
return 0;
}