步骤 | SEM数据分析的七个步骤之模型修正(含实例)

本文介绍了SEM(结构方程模型)数据分析中的模型修正步骤,强调修正时应结合理论,而非仅依赖数据驱动。修正指数作为参考标准,不同学者有不同阈值建议,如大于3.84或5。文中通过AMOS和MPLUS软件提供了实际操作指导,并提醒修正需考虑模型的整体合理性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是小婉

欢迎来到婉转数据分析工作室


SEM数据分析的七个步骤

第六期给大家讲的是

模型修正


模型修正

之前发布的关于模型拟合的文章大家都很感兴趣啊?

很多同学纷纷表示“那我只能用修正指数修正了该怎么操作?”

其实AMOS和MPLUS的修正方式在两个软件的问答篇中都有提到过。

八问八答之MPLUS篇

今天就给大家详细展开一下具体的操作。

【概念

Srbom D(1989)提出当模型拟合不理想的时候,常使用修正指标 modification ind ex (MI)来对模型进行修正 的,关于具体的一些计算公式,大家感兴趣的可以自己去下载来研究,参考文献附在文末。

1e392805a8fd0af353ff1f6efd0708e2.jpeg

修正指数是和模型的固定参数是相关的,固定参数的modification index(MI)是接近于自由度为1的卡方值,简而言之就是我们将某个固定参数改为自由参数之后,模型的卡方值会降低。原文表述如下:

e9bcb0cd2b19688ba5acf88ee9f65bfc.jpeg

但是,我们在进行修正的时候一定要注意&

### 改善MPLUS中潜变量增长模型拟合的方法 当面对潜变量增长模型(LGM)的拟合不佳情况时,在MPLUS中的调整策略可以从多个角度出发,包括但不限于重新评估测量时间点的选择、考虑引入协变量以及探索不同类型的潜在轨迹模式。 #### 调整测量时间和频率 如果发现模型拟合度低,可能是因为所选的时间间隔对于捕捉个体变化不够敏感。可以尝试增加或减少观察次数来优化模型结构[^2]。此外,不均匀的时间间距有时能更好地反映真实世界的变化规律,因此值得实验不同的时间安排方案。 #### 引入协变量(Covariates) 通过加入影响因素作为预测因子可以帮助解释额外变异并提高整体拟合质量。这些协变量既可以是个体特征(如性别、年龄),也可以是环境条件或其他外部事件的影响。适当选择和纳入相关协变量有助于揭示更深层次的关系,并使估计更为精确[^1]。 #### 探索混合效应模型(Mixture Models) 考虑到群体内部可能存在异质性的可能性,采用分层聚类方法或将样本划分为几个子群可能是必要的。这种方法允许每个子集拥有自己独特的参数设置,从而提供更加细致化的描述。具体来说,可以通过指定`CLASSES`语句来进行潜在类别分析(PCA),进而实现对复杂动态过程的有效刻画[^3]。 #### 修改残差方程(Error Covariance Structure) 有时候放宽关于误差项之间相互独立的传统假设也能显著改善LGM的表现。例如,允许相邻时间段内的随机波动存在一定的关联性可能会带来更好的统计特性。这通常涉及到定义新的路径连接各个时刻上的观测指标,形成所谓的自回归成分或者空间依赖结构。 ```mplus MODEL: i s | y1@0 y2@1 y3@2; y1 WITH y2; ! 允许第一个与第二个时间点间的误差共变 ``` #### 进行多组或多水平分析 如果有理由相信某些属性会因特定背景而有所不同,则应实施跨情境对比研究设计。比如按照地区划分参与者后分别构建各自的生长曲线图谱,再利用χ²差异检验等手段判断是否存在实质性区别。此类操作不仅能够增强结论的一般化程度,而且有利于挖掘隐藏于表面之下的机制细节。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值