使用LibSVM实现决策函数训练【人工智能】

一、下载LibSVM

LibSVM官网
下载完成解压后得到文件目录如下:
在这里插入图片描述之后选择对应语言的代码:(这里我用的JAVA

在这里插入图片描述
创建一个项目,添加一个Test类,项目目录结构如下:在这里插入图片描述

二、使用LibSVM工具准备数据

选择windows文件夹,找到名为svm-toy.exe的运行程序并运行

手动绘制数据集的点:

在这里插入图片描述最后点击Save将数据保存为train.txt。

在原有基础上再次添加一点数据,保存为test.txt。

三、训练模型并写出决策函数的数学公式

Test类

package Test;

import java.io.IOException;
import java.sql.SQLOutput;

public class Test {
    public static void main(String args[]) throws IOException {

        String filepath = "E:\\LibSvm_project1\\";

        String[] arg = {"-s","0","-c","10","-t","0",filepath+"train.txt",filepath+"text.txt"};
        System.out.println("----------------线性-----------------");

        svm_train.main(arg);

        arg[5]="1";
        arg[7]=filepath+"poly.txt";
        System.out.println("---------------多项式-----------------");
        svm_train.main(arg);

        arg[5]="2";
        arg[7]=filepath+"RBF.txt";
        System.out.println("---------------高斯核-----------------");
        svm_train.main(arg);

    }

}

运行项目,结果如下:

在这里插入图片描述

输出文件:

  • train.txt训练数据
  • text.txt线性模型
  • poly多项式模型
  • RBF高斯核模型

在这里插入图片描述

数据说明

  • svm_type //所选择的svm类型,默认为c_svc
  • kernel_type //训练采用的核函数类型,此处为RBF核
  • gamma //RBF核的参数γ
  • nr_class //类别数
  • total_sv //支持向量总个数
  • rho //判决函数的偏置项b
  • label //原始文件中的类别标识
  • nr_sv //每个类的支持向量机的个数
  • SV //各个类的权系数及相应的支持向量
    线性模型
    在这里插入图片描述

多项式模型
在这里插入图片描述
高斯核模型
在这里插入图片描述
决策函数

公式:f(x)=SV*x+rho

  • wT为向量的转置矩阵,即为模型数据中的SV
  • b为偏置常数,即为数据模型中的rho

四、参考文献

1.基于LibSVM得到决策函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值