Spark ML中的Estimator源码解析

Spark ML中的Estimator源码解析

1. 源码加上中文注释

/**
 * :: DeveloperApi ::
 * 用于将模型拟合到数据的估计器的抽象类。
 */
@DeveloperApi
abstract class Estimator[M <: Model[M]] extends PipelineStage {

  /**
   * 使用可选参数将单个模型拟合到输入数据。
   *
   * @param dataset 输入数据集
   * @param firstParamPair 第一个参数对,覆盖嵌入参数
   * @param otherParamPairs 其他参数对。这些值会覆盖此估计器嵌入 ParamMap 中指定的任何值。
   * @return 拟合后的模型
   */
  @Since("2.0.0")
  @varargs
  def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): M = {
    val map = new ParamMap()
      .put(firstParamPair)
      .put(otherParamPairs: _*)
    fit(dataset, map)
  }

  /**
   * 使用提供的参数映射将单个模型拟合到输入数据。
   *
   * @param dataset 输入数据集
   * @param paramMap 参数映射。这些值会覆盖此估计器嵌入 ParamMap 中指定的任何值。
   * @return 拟合后的模型
   */
  @Since("2.0.0")
  def fit(dataset: Dataset[_], paramMap: ParamMap): M = {
    copy(paramMap).fit(dataset)
  }

  /**
   * 将模型拟合到输入数据。
   */
  @Since("2.0.0")
  def fit(dataset: Dataset[_]): M

  /**
   * 使用多个参数映射将多个模型拟合到输入数据。
   * 默认实现使用 for 循环遍历每个参数映射。
   * 子类可以覆盖此方法以优化多模型训练。
   *
   * @param dataset 输入数据集
   * @param paramMaps 参数映射的数组。这些值会覆盖此估计器嵌入 ParamMap 中指定的任何值。
   * @return 拟合后的模型,与输入参数映射匹配
   */
  @Since("2.0.0")
  def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[M] = {
    paramMaps.map(fit(dataset, _))
  }

  override def copy(extra: ParamMap): Estimator[M]
}

2. 多种主要用法及其代码示例

  1. 使用可选参数将单个模型拟合到输入数据:
val estimator = new MyEstimator().fit(dataset, firstParamPair, otherParamPairs)
  1. 使用提供的参数映射将单个模型拟合到输入数据:
val paramMap = new ParamMap()
  .put(param1, value1)
  .put(param2, value2)
val estimator = new MyEstimator().fit(dataset, paramMap)
  1. 将模型拟合到输入数据:
val estimator = new MyEstimator().fit(dataset)
  1. 使用多个参数映射将多个模型拟合到输入数据:
val paramMaps = Array(paramMap1, paramMap2, paramMap3)
val estimators = new MyEstimator().fit(dataset, paramMaps)

3. 源码适用场景

Estimator是Spark ML中的抽象类,用于将模型拟合到数据。它适用于以下场景:

  • 需要根据给定的数据集训练一个模型。
  • 可以通过设置不同的参数映射来训练多个模型,比较它们的性能。

4. 官方链接

Apache Spark - Estimator

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BigDataMLApplication

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值