Spark ML中的Estimator源码解析
1. 源码加上中文注释
/**
* :: DeveloperApi ::
* 用于将模型拟合到数据的估计器的抽象类。
*/
@DeveloperApi
abstract class Estimator[M <: Model[M]] extends PipelineStage {
/**
* 使用可选参数将单个模型拟合到输入数据。
*
* @param dataset 输入数据集
* @param firstParamPair 第一个参数对,覆盖嵌入参数
* @param otherParamPairs 其他参数对。这些值会覆盖此估计器嵌入 ParamMap 中指定的任何值。
* @return 拟合后的模型
*/
@Since("2.0.0")
@varargs
def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): M = {
val map = new ParamMap()
.put(firstParamPair)
.put(otherParamPairs: _*)
fit(dataset, map)
}
/**
* 使用提供的参数映射将单个模型拟合到输入数据。
*
* @param dataset 输入数据集
* @param paramMap 参数映射。这些值会覆盖此估计器嵌入 ParamMap 中指定的任何值。
* @return 拟合后的模型
*/
@Since("2.0.0")
def fit(dataset: Dataset[_], paramMap: ParamMap): M = {
copy(paramMap).fit(dataset)
}
/**
* 将模型拟合到输入数据。
*/
@Since("2.0.0")
def fit(dataset: Dataset[_]): M
/**
* 使用多个参数映射将多个模型拟合到输入数据。
* 默认实现使用 for 循环遍历每个参数映射。
* 子类可以覆盖此方法以优化多模型训练。
*
* @param dataset 输入数据集
* @param paramMaps 参数映射的数组。这些值会覆盖此估计器嵌入 ParamMap 中指定的任何值。
* @return 拟合后的模型,与输入参数映射匹配
*/
@Since("2.0.0")
def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[M] = {
paramMaps.map(fit(dataset, _))
}
override def copy(extra: ParamMap): Estimator[M]
}
2. 多种主要用法及其代码示例
- 使用可选参数将单个模型拟合到输入数据:
val estimator = new MyEstimator().fit(dataset, firstParamPair, otherParamPairs)
- 使用提供的参数映射将单个模型拟合到输入数据:
val paramMap = new ParamMap()
.put(param1, value1)
.put(param2, value2)
val estimator = new MyEstimator().fit(dataset, paramMap)
- 将模型拟合到输入数据:
val estimator = new MyEstimator().fit(dataset)
- 使用多个参数映射将多个模型拟合到输入数据:
val paramMaps = Array(paramMap1, paramMap2, paramMap3)
val estimators = new MyEstimator().fit(dataset, paramMaps)
3. 源码适用场景
Estimator
是Spark ML中的抽象类,用于将模型拟合到数据。它适用于以下场景:
- 需要根据给定的数据集训练一个模型。
- 可以通过设置不同的参数映射来训练多个模型,比较它们的性能。