深度剖析数据在内存中的存储

数据类型介绍

数据类型介绍
在这里插入图片描述
以及他们所占存储空间的大小。
类型的意义:

  1. 使用这个类型开辟内存空间的大小(大小决定了使用范围)。
  2. 如何看待内存空间的视角。

类型的基本归类

整形家族:
在这里插入图片描述
生活中有些数值需要无符号类型存储比如(身高)因为身高没负数。有符号类型存储比如(温度)
char 也属于整型家族,因为字符在内存中存的是ASCII码值,是整型。
unsigned----无符号类型
signed-------有符号类型
short , int , iong默认是有符号类型,除 **char ** 外,char 不等于 signed char . C语言没有规定看编译器实现。
浮点数家族:
在这里插入图片描述
构造类型:
在这里插入图片描述
数组类型
在这里插入图片描述
指针类型:
在这里插入图片描述
空类型:

void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。

在这里插入图片描述
因为void*没有指定访问的字节大小,编译不知道如何操作,所以在解引和地址加加时会报错。

整形在内存中的存储

我们之前讲过一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。
那接下来我们谈谈数据在所开辟内存中到底是如何存储的?
比如:
在这里插入图片描述
我们知道为 a 分配四个字节的空间。那如何存储?

int main()
{
	int a = 20;
	//00000000 00000000 00000000 00010100    正整数的原、反、补码都相同
	//内存中存的补码
	int b = -10;
	//10000000 00000000 00000000 00001010   原码
	//11111111 11111111 11111111 11110101   反码
	//11111111 11111111 11111111 11110110   补码
	//内存中存的补码
	return 0;
}

下来了解下面的概念:

原码、反码、补码

计算机中的整数有三种2进制表示方法,即原码、反码和补码。
三种表示方法均有符号位数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位
正数的原、反、补码都相同。
负整数的三种表示方法各不相同。
在这里插入图片描述

原码
直接将数值按照正负数的形式翻译成二进制就可以得到原码。

反码
将原码的符号位不变,其他位依次按位取反就可以得到反码。

补码
反码+1就得到补码。

对于整形来说:数据存放内存中其实存放的是补码。
为什么呢?
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统
一处理;
同时,加法和减法也可以统一处理 (CPU只有加法器) 此外,补码与原码相互转换,其运算过程
是相同的,不需要额外的硬件电路。
我们看看在内存中的存储:在这里插入图片描述
我们可以看到对于a和b分别存储的是补码。但是我们发现顺序有点不对劲
这是又为什么?

大小端介绍

在这里插入图片描述
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址
中。也称(大端字节序存储模式)
在这里插入图片描述
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地
址中。也称(小端字节序存储模式)
为什么有大端和小端:

为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元
都对应着一个字节
,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short
型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32
位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因
此就导致了大端存储模式和小端存储模式。
例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为
高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高
地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则
为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式
还是小端模式。

百度2015年系统工程师笔试题:
请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。(10分)

int check()
{
	int a = 1;
	int b = *(&a);
	char c = (char)b;//强只类型转换,高字节类型向低字节类型,会截断
	return c;
}
int main()
{
	int i = check();
	if (i == 1)
	{
		printf("小端\n");
	}
	else
	{
		printf("大端\n");
	}
	
	return 0;
}

练习

输出什么?

#include <stdio.h>
int main()
{
	char a = -1;
	//10000000 00000000 00000000 00000001      原码
	//11111111 11111111 11111111 11111110      反码
	//11111111 11111111 11111111 11111111      补码
	//11111111     截断放在a中
	signed char b = -1;
	//10000000 00000000 00000000 00000001      原码
	//11111111 11111111 11111111 11111110      反码
	//11111111 11111111 11111111 11111111      补码
	//11111111     截断放在b中
	unsigned char c = -1;
	//10000000 00000000 00000000 00000001      原码
	//11111111 11111111 11111111 11111110      反码
	//11111111 11111111 11111111 11111111      补码
	//11111111     截断放在c中
	printf("a=%d,b=%d,c=%d", a, b, c);
	//%d       打印十进制有符号数字
	//整形提升的时候,高位补充符号位。
	//11111111    a
	//11111111 11111111 11111111 11111111       整型提升,因为char默认是有符号,符号位是1,补充符号位        -1
	//11111111    b
	//11111111 11111111 11111111 11111111       整型提升,因为char是有符号(signed),符号位是1,补充符号位   -1
	//11111111    c
	//00000000 00000000 00000000 11111111       整型提升,因为char是无符号(unsigned),符号位是0,补充符号位  255
	return 0;
}

注意:内存中存的是补码,打印和看到的都是原码
如果char e=1;它的符号位是0,整型提升是补充0.
下面程序输出什么?
1.

#include <stdio.h>
int main()
{
	char a = -128; 
    //10000000 00000000 00000000 10000000      原码
	//11111111 11111111 11111111 01111111      反码
	//11111111 11111111 11111111 10000000      补码
	//10000000   截断放在a中
	printf("%u\n", a);
	//%u        打印十进制无符号数字
	//10000000  
	//11111111 11111111 11111111 10000000      整型提升 补码
	//因为%u        打印十进制无符号数字,又因为无符号的原码,反码,补码相同,所以打印的是4294967168
	return 0;
}
#include <stdio.h>
int main()
{
	char a = 128;
	//00000000 00000000 00000000 10000000      原码
	//10000000      截断放在a中
	printf("%u\n", a);
	//10000000
	//111111111 11111111 1111111 10000000  整型提升,补符号   打印的是4294967168
	return 0;
}
int main()
{
	int i = -20;
	//10000000 00000000 00000000 00010100    原码
	//11111111 11111111 11111111 11101011    反码
	//11111111 11111111 11111111 11101100    补码
	unsigned int j = 10;
	//00000000 00000000 00000000 00001010    原码
	printf("%d\n", i + j);
	//11111111 11111111 11111111 11101100 
	//00000000 00000000 00000000 00001010
	//11111111 11111111 11111111 11110110    补码
	//10000000 00000000 00000000 00001001    反码
	//10000000 00000000 00000000 00001010    原码      -10
	return 0;
}
//按照补码的形式进行运算,最后格式化成为有符号整数
int main()
{
	unsigned int i;
	for (i = 9; i >= 0; i--) 
	{
		printf("%u\n", i);
	}
	return 0;
}

解释一下
死循环 i 是unsigned 类型没有符号类型吗,内存中存的二进制恒>=0.
5.

int main()
{
    char a[1000];
    int i;
    for(i=0; i<1000; i++)
   {
        a[i] = -1-i;
   }
    printf("%d",strlen(a));
    return 0; }

解释一下
在这里插入图片描述
strlen函数是计算‘\0’之前的字符个数,因为’\0’的ASCII值是0。进入循环-1,-2,-3…-127,-128,127…3,2,1。‘\0’之前的个数等于127+128=255
6.

#include <stdio.h>
unsigned char i = 0;
int main()
{
	for (i = 0; i <= 255; i++)
	{
		printf("hello world\n");
	}
	return 0;
}

char 无符号类型的最大值是255,条件恒成立,死循环。

浮点型在内存中的存储

常见的浮点数:
3.14159
1E10
浮点数家族包括: float、double、long double 类型。
浮点数表示的范围:fl0at.h中定义。
举一个例子
浮点数存储的例子:

int main()
{
	int n = 9;
	float* pFloat = (float*)&n;
	printf("n的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
	*pFloat = 9.0;
	printf("num的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
	return 0;
}

输出的结果是什么呢?
在这里插入图片描述

浮点数存储规则

num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
详细解读:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:

(-1)^S * M * 2^E
(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。

举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
在这里插入图片描述
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
在这里插入图片描述
IEEE 754对有效数字M和指数E,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的
xxxxxx部分。比如保存1.01的时
候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位
浮点数为例,留给M只有23位,
将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)

这意味着,如果E为8位,它的取值范围为0255;如果E为11位,它的取值范围为02047。但是,我们
知道,科学计数法中的E是可以出
现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数
是127;对于11位的E,这个中间
数是1023。
比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即
10001001。
在这里插入图片描述
然后,指数E从内存中取出还可以再分成三种情况
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将
有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其阶码为-1+127=126,表示为
01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进
制表示形式为
在这里插入图片描述
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于
0的很小的数字。
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
解释前面的题目:

int main()
{
	int n = 9;
	float* pFloat = (float*)&n;
	printf("n的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
	*pFloat = 9.0;
	printf("num的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
	return 0;
}

下面,让我们回到一开始的问题:为什么 0x00000009 还原成浮点数,就成了 0.000000 ?
首先,将 0x00000009 拆分,得到第一位符号位s=0,后面8位的指数 E=00000000 ,
最后23位的有效数字M=000 0000 0000 0000 0000 1001。
在这里插入图片描述
由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:
   V=(-1)^0 × 0.00000000000000000001001×2(-126)=1.001×2(-146)
显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000

再看例题的第二部分。
请问浮点数9.0,如何用二进制表示?还原成十进制又是多少?
首先,浮点数9.0等于二进制的1001.0,即1.001×2^3
在这里插入图片描述
那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130, 即10000010。
所以,写成二进制形式,应该是s+E+M,即
在这里插入图片描述
这个32位的二进制数,还原成十进制,正是 1091567616 。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦乘着风去远航

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值