BZOJ 1742 [Usaco2005 nov]Grazing on the Run 边跑边吃草 + BZOJ 3074 [Usaco2013 Mar]The Cow Run

题目链接

https://www.lydsy.com/JudgeOnline/problem.php?id=1742

https://www.lydsy.com/JudgeOnline/problem.php?id=3074

双倍经验题

题解

可以证明,奶牛吃掉的草一定是一段区间。

f [ l ] [ r ] [ 0 / 1 ] f[l][r][0/1] f[l][r][0/1]表示 [ l , r ] [l,r] [l,r]这一段的草已经被吃完了,现在奶牛停在左边还是右边,所花费的最小代价。转移非常显然,时间复杂度 O ( n 2 ) O(n^2) O(n2)

代码

BZOJ 1742

#include <cstdio>
#include <cstring>
#include <algorithm>

int read()
{
  int x=0,f=1;
  char ch=getchar();
  while((ch<'0')||(ch>'9'))
    {
      if(ch=='-')
        {
          f=-f;
        }
      ch=getchar();
    }
  while((ch>='0')&&(ch<='9'))
    {
      x=x*10+ch-'0';
      ch=getchar();
    }
  return x*f;
}

const int maxn=1000;

int n,v[maxn+10];
long long f[maxn+10][maxn+10][2];

int main()
{
  n=read();
  v[0]=read();
  for(int i=1; i<=n; ++i)
    {
      v[i]=read();
    }
  std::sort(v+1,v+n+1);
  memset(f,63,sizeof f);
  int flag=0;
  for(int i=1; i<=n; ++i)
    {
      if(v[0]<=v[i])
        {
          for(int j=n; j>=i; --j)
            {
              v[j+1]=v[j];
            }
          v[i]=v[0];
          f[i][i][0]=f[i][i][1]=0;
          flag=1;
          break;
        }
    }
  if(flag==0)
    {
      v[n+1]=v[0];
      f[n+1][n+1][0]=f[n+1][n+1][1]=0;
    }
  for(int i=n+1; i; --i)
    {
      for(int j=i+1; j<=n+1; ++j)
        {
          f[i][j][0]=std::min(f[i][j][0],std::min(f[i+1][j][0]+1ll*(n-j+i+1)*(v[i+1]-v[i]),f[i+1][j][1]+1ll*(n-j+i+1)*(v[j]-v[i])));
          f[i][j][1]=std::min(f[i][j][1],std::min(f[i][j-1][1]+1ll*(n-j+i+1)*(v[j]-v[j-1]),f[i][j-1][0]+1ll*(n-j+i+1)*(v[j]-v[i])));
        }
    }
  printf("%lld\n",std::min(f[1][n+1][0],f[1][n+1][1]));
  return 0;
}

BZOJ 3074

#include <cstdio>
#include <cstring>
#include <algorithm>

int read()
{
  int x=0,f=1;
  char ch=getchar();
  while((ch<'0')||(ch>'9'))
    {
      if(ch=='-')
        {
          f=-f;
        }
      ch=getchar();
    }
  while((ch>='0')&&(ch<='9'))
    {
      x=x*10+ch-'0';
      ch=getchar();
    }
  return x*f;
}

const int maxn=1000;

int n,v[maxn+10];
long long f[maxn+10][maxn+10][2];

int main()
{
  n=read();
  for(int i=1; i<=n; ++i)
    {
      v[i]=read();
    }
  std::sort(v+1,v+n+1);
  memset(f,63,sizeof f);
  int flag=0;
  for(int i=1; i<=n; ++i)
    {
      if(0<=v[i])
        {
          for(int j=n; j>=i; --j)
            {
              v[j+1]=v[j];
            }
          v[i]=f[i][i][0]=f[i][i][1]=0;
          flag=1;
          break;
        }
    }
  if(flag==0)
    {
      v[n+1]=f[n+1][n+1][0]=f[n+1][n+1][1]=0;
    }
  for(int i=n+1; i; --i)
    {
      for(int j=i+1; j<=n+1; ++j)
        {
          f[i][j][0]=std::min(f[i][j][0],std::min(f[i+1][j][0]+1ll*(n-j+i+1)*(v[i+1]-v[i]),f[i+1][j][1]+1ll*(n-j+i+1)*(v[j]-v[i])));
          f[i][j][1]=std::min(f[i][j][1],std::min(f[i][j-1][1]+1ll*(n-j+i+1)*(v[j]-v[j-1]),f[i][j-1][0]+1ll*(n-j+i+1)*(v[j]-v[i])));
        }
    }
  printf("%lld\n",std::min(f[1][n+1][0],f[1][n+1][1]));
  return 0;
}

基于springboot+vue前后端分离,学生心理咨询评估系统(源码+Mysql数据库+视频+论文+PPT+教程),高分项目,开箱即用(毕业设计)(课堂设计) 使用旧方法对学生心理咨询评估信息进行系统化管理已经不再让人们信赖了,把现在的网络信息技术运用在学生心理咨询评估信息的管理上面可以解决许多信息管理上面的难题,比如处理数据时间很长,数据存在错误不能及时纠正等问题。 这次开发的学生心理咨询评估系统有管理员和用户。管理员可以管理个人中心,用户管理,试题管理,试卷管理,考试管理等。用户参加考试。。经过前面自己查阅的网络知识,加上自己在学校课堂上学习的知识,决定开发系统选择B/S模式这种高效率的模式完成系统功能开发。这种模式让操作员基于浏览器的方式进行网站访问,采用的主流的Java语言这种面向对象的语言进行学生心理咨询评估系统程序的开发,后台采用Spring Boot框架,在数据库的选择上面,选择功能强大的MySQL数据库进行数据的存放操作。 学生心理咨询评估系统被人们投放于现在的生活中进行使用,该款管理类软件就可以让管理人员处理信息的时间介于十几秒之间。在这十几秒内就能完成信息的编辑等操作。有了这样的管理软件,学生心理咨询评估信息的管理就离无纸化办公的目标更贴近了。
道路坑洞与车牌人物多目标检测数据集 一、基础信息 数据集名称:道路坑洞与车牌人物多目标检测数据集 数据规模: - 训练集:3,900张道路场景图片 - 验证集:194张标注图片 - 测试集:72张评估图片 目标类别: - 行人(Human):道路场景中的行人目标 - 车牌(Licence):车辆牌照及编号信息 - 坑洞(Pothole):路面凹陷破损区域 - 复合目标(Potholes-carplate-and-people):同时包含坑洞/车牌/行人的复杂场景 技术规格: - 标注格式:YOLO格式标注框 - 数据格式:JPEG/PNG道路实拍图像 二、适用场景 自动驾驶感知系统开发: 支持车载摄像头实时检测道路坑洞、行人及车牌信息,提升自动驾驶系统的环境感知能力。 道路养护评估系统: 通过检测路面坑洞分布和严重程度,为市政道路维护提供量化评估依据。 交通监控解决方案: 适用于智能交通系统中异常路况检测、车牌识别与行人安全预警等多任务场景。 计算机视觉研究: 提供多目标联合检测的实战数据,支持目标检测、异常区域定位等算法研究。 三、核心优势 多目标协同检测: 覆盖道路场景四大关键目标类别,支持单帧图像中同时检测路面缺陷、车辆牌照和行人目标。 真实场景多样性: 包含不同光照条件、天气状况和道路类型的实际道路图像,确保模型泛化能力。 工业级兼容性: 原生YOLO格式标注可直接应用于YOLOv5/v7/v8等主流检测框架,降低数据转换成本。 专业数据标注: 所有标注框经过双重质量校验,确保目标定位精度和类别标注准确性,框体坐标误差小于2%。
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策点。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将队列尾部的决策点 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护队列头部的决策点是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值