BZOJ 2318 Spoj4060 game with probability Problem

题目链接

https://www.lydsy.com/JudgeOnline/problem.php?id=2318

题解

f [ i ] f[i] f[i]表示Alice胜的概率, g [ i ] g[i] g[i]表示Bob胜的概率, a a a表示Alice抛出正面的概率, b b b表示Bob抛出正面的概率,则:
f [ i ] = a × g [ i − 1 ] + ( 1 − a ) × g [ i ] g [ i ] = b × f [ i − 1 ] + ( 1 − b ) × f [ i ] f[i]=a\times g[i-1]+(1-a)\times g[i]\\ g[i]=b\times f[i-1]+(1-b)\times f[i] f[i]=a×g[i1]+(1a)×g[i]g[i]=b×f[i1]+(1b)×f[i]
化简得到
f [ i ] = a × g [ i − 1 ] + ( 1 − a ) × b × f [ i − 1 ] a + b − a × b g [ i ] = b × f [ i − 1 ] + ( 1 − b ) × a × g [ i − 1 ] a + b − a × b f[i]=\frac{a\times g[i-1]+(1-a)\times b\times f[i-1]}{a+b-a\times b}\\ g[i]=\frac{b\times f[i-1]+(1-b)\times a\times g[i-1]}{a+b-a\times b} f[i]=a+ba×ba×g[i1]+(1a)×b×f[i1]g[i]=a+ba×bb×f[i1]+(1b)×a×g[i1]
可以看出,当 f [ i − 1 ] > g [ i − 1 ] f[i-1]>g[i-1] f[i1]>g[i1]时, a = 1 − p , b = 1 − q a=1-p,b=1-q a=1p,b=1q,否则 a = p , b = q a=p,b=q a=p,b=q。初值 f [ 0 ] = 0 , g [ 0 ] = 1 f[0]=0,g[0]=1 f[0]=0,g[0]=1

但是 O ( n ) O(n) O(n)的转移显然会TLE,事实上,当 n n n很大时,概率几乎不再改变,因此当 n > 100 n>100 n>100时可以认为 n = 100 n=100 n=100

代码

#include <cstdio>
#include <algorithm>

const int maxn=100;

int t,n;
double p,q,f[maxn+10],g[maxn+10];

int main()
{
  scanf("%d",&t);
  while(t--)
    {
      scanf("%d%lf%lf",&n,&p,&q);
      f[0]=0;
      g[0]=1;
      n=std::min(n,maxn);
      for(int i=1; i<=n; ++i)
        {
          double a,b;
          if(f[i-1]>g[i-1])
            {
              a=1-p;
              b=1-q;
            }
          else
            {
              a=p;
              b=q;
            }
          f[i]=(a*g[i-1]+(1-a)*b*f[i-1])/(a+b-a*b);
          g[i]=(b*f[i-1]+(1-b)*a*g[i-1])/(a+b-a*b);
        }
      printf("%.6lf\n",f[n]);
    }
  return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值